The region-based association analysis has been proposed to capture the collective behavior of sets of variants by testing the association of each set instead of individual variants with the disease. Such an analysis typically involves a list of unphased multiple-locus genotypes with potentially sparse frequencies in cases and controls. To tackle the problem of the sparse distribution, a two-stage approach was proposed in literature: In the first stage, haplotypes are computationally inferred from genotypes, followed by a haplotype coclassification. In the second stage, the association analysis is performed on the inferred haplotype groups. If a haplotype is unevenly distributed between the case and control samples, this haplotype is labeled as a risk haplotype. Unfortunately, the in-silico reconstruction of haplotypes might produce a proportion of false haplotypes which hamper the detection of rare but true haplotypes. Here, to address the issue, we propose an alternative approach: In Stage 1, we cluster genotypes instead of inferred haplotypes and estimate the risk genotypes based on a finite mixture model. In Stage 2, we infer risk haplotypes from risk genotypes inferred from the previous stage. To estimate the finite mixture model, we propose an EM algorithm with a novel data partition-based initialization. The performance of the proposed procedure is assessed by simulation studies and a real data analysis. Compared to the existing multiple Z-test procedure, we find that the power of genome-wide association studies can be increased by using the proposed procedure.
Finite Element Approach is employed in this research work to solve the governing differential equations related to seepage via its foundation's dam structure. The primary focus for this reason is the discretization of domain into finite elements through the placement of imaginary nodal points and the discretization of governing equations into an equation system; An equation for each nodal point or part, and unknown variables are solved. The SEEP / W software (program) is a sub-program of the Geo-Studio software, which is used by porous soil media to compensate for the problems of seepage. To achieve the research goals, a study was carried out on Hemrin dam, which located in the Diyala River 100 km northeast of Baghdad, Iraq. Thus, o
... Show MoreThis paper proposes a novel finite-time generalized proportional integral observer (FTGPIO) based a sliding mode control (SMC) scheme for the tracking control problem of high order uncertain systems subject to fast time-varying disturbances. For this purpose, the construction of the controller consists of two consecutive steps. First, the novel FTGPIO is designed to observe unmeasurable plant dynamics states and disturbance with its higher time derivatives in finite time rather than infinite time as in the standard GPIO. In the FTGPO estimator, the finite time convergence rate of estimations is well achieved, whereas the convergence rate of estimations by classical GPIO is asymptotic and slow. Secondly, on the basis of the finite and fast e
... Show MoreSeepage occurs under or inside structures or in the place, where they come into contact with the sides under the influence of pressure caused by the difference in water level in the structure U / S and D / S. This paper is designed to model seepage analysis for Kongele (an earth dam) due to its importance in providing water for agricultural projects and supporting Tourism sector. For this purpose, analysis was carried out to study seepage through the dam under various conditions. Using the finite element method by computer program (Geo-Studio) the dam was analysed in its actual design using the SEEP / W 2018 program. Several analyses were performed to study the seepage across Kongele
Different ANN architectures of MLP have been trained by BP and used to analyze Landsat TM images. Two different approaches have been applied for training: an ordinary approach (for one hidden layer M-H1-L & two hidden layers M-H1-H2-L) and one-against-all strategy (for one hidden layer (M-H1-1)xL, & two hidden layers (M-H1-H2-1)xL). Classification accuracy up to 90% has been achieved using one-against-all strategy with two hidden layers architecture. The performance of one-against-all approach is slightly better than the ordinary approach
Association rules mining (ARM) is a fundamental and widely used data mining technique to achieve useful information about data. The traditional ARM algorithms are degrading computation efficiency by mining too many association rules which are not appropriate for a given user. Recent research in (ARM) is investigating the use of metaheuristic algorithms which are looking for only a subset of high-quality rules. In this paper, a modified discrete cuckoo search algorithm for association rules mining DCS-ARM is proposed for this purpose. The effectiveness of our algorithm is tested against a set of well-known transactional databases. Results indicate that the proposed algorithm outperforms the existing metaheuristic methods.
With the massive presence of the critical approaches &, artistical School, movements, methods, Concepts, & theories, which came to take its chance from arts in general view & the plastic arts in special view. The Searches of fine arts & what this methods present from excitement become the point for many questions, & go to the purposes to be useful. For the artistic Work to come out in aesthetic image, especially on the subject of reading& reception, & entering it into layout of multiple relationships, for the artistic Work to be more simulation of the appearances of the things & interpreted it in Accor.
Dance to aesthetic that Limited by the new method. With those Innovative Visions, & Composite Sy
This paper presents a nonlinear finite element modeling and analysis of steel fiber reinforced concrete (SFRC) deep beams with and without openings in web subjected to two- point loading. In this study, the beams were modeled using ANSYS nonlinear finite element
software. The percentage of steel fiber was varied from 0 to 1.0%.The influence of fiber content in the concrete deep beams has been studied by measuring the deflection of the deep beams at mid- span and marking the cracking patterns, compute the failure loads for each deep beam, and also study the shearing and first principal stresses for the deep beams with and without openings and with different steel fiber ratios. The above study indicates that the location of openings an
In this study, a three-dimensional finite element analysis using ANSYS 12.1 program had been employed to simulate simply supported reinforced concrete (RC) T-beams with multiple web circular openings subjected to an impact loading. Three design parameters were considered, including size, location and number of the web openings. Twelve models of simply supported RC T-beams were subjected to one point of transient (impact) loading at mid span. Beams were simulated and analysis results were obtained in terms of mid span deflection-time histories and compared with the results of the solid reference one. The maximum mid span deflection is an important index for evaluating damage levels of the RC beams subjected to impact loading. Three experi
... Show More: The need for means of transmitting data in a confidential and secure manner has become one of the most important subjects in the world of communications. Therefore, the search began for what would achieve not only the confidentiality of information sent through means of communication, but also high speed of transmission and minimal energy consumption, Thus, the encryption technology using DNA was developed which fulfills all these requirements [1]. The system proposes to achieve high protection of data sent over the Internet by applying the following objectives: 1. The message is encrypted using one of the DNA methods with a key generated by the Diffie-Hellman Ephemeral algorithm, part of this key is secret and this makes the pro
... Show More