A variety of liquid crystals comprising heterocyclics 1,3,4-oxadiazol ring [III], aminooxazol [IV]a, and aminothiazol [IV]b were synthesized through a number of steps, beginning of the reaction of 3, 3'- dimethyl - [1, 1'-biphenyl] -4, 4'- diamin, ethyl monochloroacetate and sodium acetate to synthesize diacetate compound[I]. The diester reacted with hydrazine hydrate(N2H4-H2O) to give dihydrazide compound [II], then reacted with Pyruvic acid and phosphorous oxychloride to produce diketone compound [III]. The last compound was reacted with urea and thiourea to give aminooxazol and aminothiazol respectively. The synthesized compounds actually characterized and determined the structures by melting points, FT-IR and 1H-NMR spectroscopies. By u
... Show MoreSome new 2,5-disubsituted-1,3,4-oxadiazole derivatives with azo group were synthesized by known reactions sequence . The structure of the synthesized compounds were confirmed by physical and spectral means .
The definition of orthogonal generalized higher k-derivation is examined in this paper and we introduced some of its related results.
The main purpose of this paper is to show that zero symmetric prime near-rings, satisfying certain identities on n-derivations, are commutative rings.
In this paper a Г-ring M is presented. We will study the concept of orthogonal generalized symmetric higher bi-derivations on Г-ring. We prove that if M is a 2-torsion free semiprime Г-ring , and are orthogonal generalized symmetric higher bi-derivations associated with symmetric higher bi-derivations respectively for all n ϵN.
n this paper , we prove that if T is a 2-torsion free triangular ring and be a family of additive mapping then satisfying is a higher centralizer which is means that is Jordan higher centralizer on 2-torsion free triangular ring if and only if is a higher centralizer and also we prove that if be a family of additive mapping satisfying the relation Σ , Then is a higher centralizer.
Let M be a weak Nobusawa -ring and γ be a non-zero element of Γ. In this paper, we introduce concept of k-reverse derivation, Jordan k-reverse derivation, generalized k-reverse derivation, and Jordan generalized k-reverse derivation of Γ-ring, and γ-homomorphism, anti-γ-homomorphism of M. Also, we give some commutattivity conditions on γ-prime Γ-ring and γ-semiprime Γ-ring .
In this paper, we introduce the notion of Jordan generalized Derivation on prime and then some related concepts are discussed. We also verify that every Jordan generalized Derivation is generalized Derivation when is a 2-torsionfree prime .
In this paper, we proved that if R is a prime ring, U be a nonzero Lie ideal of R , d be a nonzero (?,?)-derivation of R. Then if Ua?Z(R) (or aU?Z(R)) for a?R, then either or U is commutative Also, we assumed that Uis a ring to prove that: (i) If Ua?Z(R) (or aU?Z(R)) for a?R, then either a=0 or U is commutative. (ii) If ad(U)=0 (or d(U)a=0) for a?R, then either a=0 or U is commutative. (iii) If d is a homomorphism on U such that ad(U) ?Z(R)(or d(U)a?Z(R), then a=0 or U is commutative.
We present the concept of maps Γ- periodi2 on Γ -near-ring S. Our main goal is to research and explore the presence and mapping traits such as h Γ –hom anti-Γ –hom, Γ –α-derivations of Γ -periodi2 on Γ- near-rings.