In this study, sulfur was removed from imitation oil using oxidative desulfurization process. Silicoaluminophosphate (SAPO-11) was prepared using the hydrothermal method with a concentration of carbon nanotubes (CNT) of 0% and 7.5% at 190 °C crystallization temperature. The final molar composition of the as-prepared SAPO-11 was Al2O3: 0.93P2O5: 0.414SiO2. 4% MO/SAPO-11 was prepared using impregnation methods. The produced SAPO-11 was described using X-ray diffraction (XRD) and Brunauer-Emmet-Teller (N2 adsorption–desorption isotherms). It was found that the addition of CNT increased the crystallinity of SAPO-11. The results showed that the surface area of SAPO-11 containing 7.5% CNT was 179.54 m2/g, and the pore volume was 0.317 cm3/g. However, the surface area of SAPO-11 containing 0% CNT was 125.311 m2/g, and pore volume was 0.275 cm3/g, while nanoparticles with an average particle diameter of 24.8 nm were obtained. Then, the prepared SAPO-11 was used in the oxidative desulfurization process. The oxidative desulfurization was studied using several factors affecting desulfurization efficiency, such as time (40, 60, 80, 100, and 120) min, amount of MO/SAPO-11 (0.3, 0.4, 0.5, 0.6, and 0.7) g/100 ml of simulated oil (100 ppm of dibenzothiophene), the amount of hydrogen peroxide (4ml) oxidizer/100 ml of simulated oil, and the temperature ranges from (40, 50, 60, 70, and 80 °C). The results showed that an increase in MO/SAPO-11 led to an increase in desulfurization. The best removal percentage for sulfur content was 92.79%, obtained at 70 °C and 0.6 g of MO/SAPO-11 containing 7.5% CNT, and the removal was 82.34% at 0% CNT and the same other conditions. While the equilibrium was achieved after 100 min. The results revealed that Freundlich's model described the adsorption of sulfur compounds better than Langmuir's, where the R2 of the Freundlich model was 0.9979 and the R2 of the Langmuir model was 0.9554.
There continues to be a need for an in-situ sensor system to monitor the engine oil of internal combustion engines. Engine oil needs to be monitored for contaminants and depletion of additives. While various sensor systems have been designed and evaluated, there is still a need to develop and evaluate new sensing technologies. This study evaluated Terahertz time-domain spectroscopy (THz-TDS) for the identification and estimation of the glycol contamination of automotive engine oil. Glycol contamination is a result of a gasket or seal leak allowing coolant to enter an engine and mix with the engine oil. An engine oil intended for use in both diesel and gasoline engines was obtained. Fresh engine oil samples were contaminated with fou
... Show MoreThe optimum separators operating pressure is determined by using flash calculations and equilibrium ratios. In this study, the optimum separator size for Jambur field is calculated by using equations introduced by Arnold and Stewart and API12J Specification [1]. Because Jambur field has a high production rate two conditions are taken in the study to determine separator size, first based on production rate 80,000 bbl/day and second based on split the production between two banks A and B (40,000 bbl/day for each bank). The calculation resulted in optimum separator pressure for the first stage of 700 psi, and the second stage of 300 psi, and the third stage of 120 psi. The results show that as the number of stages increased above three-stag
... Show Moreole in all sta Oil well logging, also known as wireline logging, is a method of collecting data from the well environment to determine subterranean physical properties and reservoir parameters. Measurements are collected against depth along the well's length, and many types of wire cabling tools depend on the physical property of interest. Well probes generally has a dynamic respon to changes in rock layers and fluid composition. These probes or well logs are legal documents that record the history of a well during the drilling stages until its completion. Well probes record the physical properties of the well, which must then be interpreted in petrographic terms to obtain the characteristics of the rocks and fluids associated with
... Show Moreole in all sta
Oil well logging, also known as wireline logging, is a method of collecting data from the well environment to determine subterranean physical properties and reservoir parameters. Measurements are collected against depth along the well's length, and many types of wire cabling tools depend on the physical property of interest. Well probes generally has a dynamic respon to changes in rock layers and fluid composition. These probes or well logs are legal documents that record the history of a well during the drilling stages until its completion. Well probes record the physical properties of the well, which must then be interpreted in petrographic terms to obtain the characteristics of the rocks and flui
... Show MoreOften there is no well drilling without problems. The solution lies in managing and evaluating these problems and developing strategies to manage and scale them. Non-productive time (NPT) is one of the main causes of delayed drilling operations. Many events or possibilities can lead to a halt in drilling operations or a marginal decrease in the advancement of drilling, this is called (NPT). Reducing NPT has an important impact on the total expenditure, time and cost are considered one of the most important success factors in the oil industry. In other words, steps must be taken to investigate and eliminate loss of time, that is, unproductive time in the drilling rig in order to save time and cost and reduce wasted time. The data of
... Show MoreThe lethality of inorganic arsenic (As) and the threat it poses have made the development of efficient As detection systems a vital necessity. This research work demonstrates a sensing layer made of hydrous ferric oxide (Fe2H2O4) to detect As(III) and As(V) ions in a surface plasmon resonance system. The sensor conceptualizes on the strength of Fe2H2O4 to absorb As ions and the interaction of plasmon resonance towards the changes occurring on the sensing layer. Detection sensitivity values for As(III) and As(V) were 1.083 °·ppb−1 and 0.922 °·ppb
Research summarized in applying the model of fuzzy goal programming for aggregate production planning , in General Company for hydraulic industries / plastic factory to get an optimal production plan trying to cope with the impact that fluctuations in demand and employs all available resources using two strategies where they are available inventories strategy and the strategy of change in the level of the workforce, these strategies costs are usually imprecise/fuzzy. The plant administration trying to minimize total production costs, minimize carrying costs and minimize changes in labour levels. depending on the gained data from th
... Show MoreThe support vector machine, also known as SVM, is a type of supervised learning model that can be used for classification or regression depending on the datasets. SVM is used to classify data points by determining the best hyperplane between two or more groups. Working with enormous datasets, on the other hand, might result in a variety of issues, including inefficient accuracy and time-consuming. SVM was updated in this research by applying some non-linear kernel transformations, which are: linear, polynomial, radial basis, and multi-layer kernels. The non-linear SVM classification model was illustrated and summarized in an algorithm using kernel tricks. The proposed method was examined using three simulation datasets with different sample
... Show MoreBreast cancer is a heterogeneous disease characterized by molecular complexity. This research utilized three genetic expression profiles—gene expression, deoxyribonucleic acid (DNA) methylation, and micro ribonucleic acid (miRNA) expression—to deepen the understanding of breast cancer biology and contribute to the development of a reliable survival rate prediction model. During the preprocessing phase, principal component analysis (PCA) was applied to reduce the dimensionality of each dataset before computing consensus features across the three omics datasets. By integrating these datasets with the consensus features, the model's ability to uncover deep connections within the data was significantly improved. The proposed multimodal deep
... Show More