The physical sports sector in Iraq suffers from the problem of achieving sports achievements in individual and team games in various Asian and international competitions, for many reasons, including the lack of exploitation of modern, accurate and flexible technologies and means, especially in the field of information technology, especially the technology of artificial neural networks. The main goal of this study is to build an intelligent mathematical model to predict sport achievement in pole vaulting for men, the methodology of the research included the use of five variables as inputs to the neural network, which are Avarage of Speed (m/sec in Before distance 05 meters latest and Distance 05 meters latest, The maximum speed achieved in the last 5 meters from the total approach distance of 30 meters, The ratio of the conversion coefficient of horizontal velocity to vertical velocity, The ratio of the conversion coefficient of horizontal velocity to vertical velocity, The height of the fist is over the full length of the pole's stick) and these are considered independent variables, while the dependent variable was the prediction of achievement (Final height achieved by the jumper) as an output. The neural network architecture was represented by three layers, the first layer is the input layer with the five variables, and one layer is hidden and contains one node, while the last layer is the output layer that represents the outcome of the sport achievement prediction of male weight jumping. The momentum term and learning rate were chosen by 0.95 and 0.4 respectively, and the transfer function in the hidden layer was the sigmoid function and in the last layer was the sigmoid function, the historical data used in this model represent the Olympic achievements of a number of world champions, the results of this study were that the artificial neural network has the ability to prediction of sport achievement for determine the height of the jump of the pole player with a degree of accuracy of 90.10%, correlation coefficient and 95.60%.
Abstract
The aim of the current research is to identify the effect of the effective reading strategy on the achievement of second-middle students in biology, as well as the imaginative thinking skills of students. The researcher adopted the experimental design with partial control to achieve the goal of the research. The current research community identified the second-middle students in the government schools of the Baghdad Education Directorate / Rusafa I for the academic year (2021-2022 AD). The Safina Intermediate School for Girls was chosen to be the research sample in the form of intentionally, two classes were randomly selected from a total of four classes, one of them is experimental and the other is con
... Show MoreThe study of history has begun to become increasingly important for those interested in the field of education in general, and physical education and sports sciences in particular. It is a recent study of the past and relying on it. Therefore, studying the history of sports for people with disabilities and their development is of great importance, as it is one of the means to measure the extent of development of societies and their culture in this field. Weightlifting is a sport for people with motor disabilities, and the way to play is for the contestant to lie on the bench (ping bar) and most often the legs are tied to the bench to ensure that the hip and legs do not contribute to the lifting process with the arms, when the player grabs t
... Show MoreThe current research aims to identify the effect of the Bransford and Stein model on the achievement of fifth-grade literary students for geography and their reflective thinking. To achieve the objective of the research, the following two null hypotheses were formulated:
- There is no statistically significant difference at the significance level (0.05) between the average scores of the experimental group students who studied geography using the Bransford and Stein model and the average scores of the control group students who studied the same subject in the usual way in the achievement test. 2- There is no statistically significant difference at the significance level (0.05) between the average scores of the experimental gr
In this paper we present a method to analyze five types with fifteen wavelet families for eighteen different EMG signals. A comparison study is also given to show performance of various families after modifying the results with back propagation Neural Network. This is actually will help the researchers with the first step of EMG analysis. Huge sets of results (more than 100 sets) are proposed and then classified to be discussed and reach the final.
In recent years, with the rapid development of the current classification system in digital content identification, automatic classification of images has become the most challenging task in the field of computer vision. As can be seen, vision is quite challenging for a system to automatically understand and analyze images, as compared to the vision of humans. Some research papers have been done to address the issue in the low-level current classification system, but the output was restricted only to basic image features. However, similarly, the approaches fail to accurately classify images. For the results expected in this field, such as computer vision, this study proposes a deep learning approach that utilizes a deep learning algorithm.
... Show MoreAutism Spectrum Disorder, also known as ASD, is a neurodevelopmental disease that impairs speech, social interaction, and behavior. Machine learning is a field of artificial intelligence that focuses on creating algorithms that can learn patterns and make ASD classification based on input data. The results of using machine learning algorithms to categorize ASD have been inconsistent. More research is needed to improve the accuracy of the classification of ASD. To address this, deep learning such as 1D CNN has been proposed as an alternative for the classification of ASD detection. The proposed techniques are evaluated on publicly available three different ASD datasets (children, Adults, and adolescents). Results strongly suggest that 1D
... Show More