Objectives: This study aimed to evaluate and compare the effect of plasma treatment versus conventional treatment on the micro shear bond strength (μSBS), surface roughness, and wettability of three different CAD/CAM materials. Materials and methods: Sixty cylindrical specimens (5 mm diameter ×3 mm height) were prepared from three different CAD/CAM materials: Group A: Zirconia, Group B: Lithium disilicate, and Group C: Resin nano-ceramic. Each group was subdivided into two subgroups according to surface treatment used: Subgroup I: Conventional treatment, zirconia was sandblasted with Al2O3, while lithium disilicate and resin nano-ceramic were etched with hydrofluoric acid. Subgroup II: Plasma treatment, the surface of each material was treated with a plasma device (PiezoBrush® PZ3 Handheld Device, Relyon Plasma, Regensburg, Germany). G-Multi PRIMER was applied, then self-adhesive cement (G-CEM ONE) was applied using a split mold (1 mm diameter ×3 mm height), and μSBS was tested in a universal testing machine. The surface roughness was measured using a profilometer. Nine additional specimens of each material for wettability test using an optical tensiometer. Statistical analysis: The data were analyzed using ANOVA and Bonferroni test at a level of significance of 0.05. Results: The highest mean of μSBS was recorded by AII (27.3 MPa), while the lowest was recorded by AI (17.9 MPa). One-way ANOVA test revealed a significant difference among groups. Bonferroni test showed each two subgroups significant difference except subgroups AI, CI and BII, CII, where there was a non-significant difference. For all CAD/CAM materials, conventional treatment increased the surface roughness compared to plasma treatment, while the contact angle decreased after plasma treatment. Conclusion: Plasma treatment increased the μSBS of resin cement to zirconia significantly while not significantly affecting the μSBS of resin nano-ceramic. Conventional treatment of lithium disilicate provided significantly higher μSBS than plasma treatment.
Iraqi crude Atmospheric residual fraction supplied from al-Dura refinery was treated to remove metals contaminants by solvent extraction method, with various hydrocarbon solvents and concentrations. The extraction method using three different type solvent (n-hexane, n-heptane, and light naphtha) were found to be effective for removal of oil-soluble metals from heavy atmospheric residual fraction. Different solvents with using three different hydrocarbon solvents (n-hexane, n-heptane, and light naphtha) .different variables were studied solvent/oil ratios (4/1, 8/1, 10/1, 12/1, and 15/1), different intervals of perceptual (15, 30-60, 90 and 120 min) and different temperature (30, 45, 60 and 90 °C) were used. The metals removal perce
... Show More4-methylaniline and its Schiff base derivative were intercalated into the Bentonite clay interlayers in a solid state reaction followed by a condensation reaction to produce two organo-clay composites. X-ray diffraction was used to identify the changes in basal spacing of montmorillonite layers which exhibited noticeable alteration before and after the formation of the composites. FT-IR spectra, on the other hand, were utilized for identifying the structural compositions of the prepared materials as well as the formation of the intercalated Schiff base derivative. The surface morphology of the composites was examined by Scanning Electron Microscopy SEM and Atomic Force Microscope AFM, which reflected some differences in the surface of prepa
... Show MoreGlobal concerns are rising due to complications associated with the use of chemical agents and antibiotic resistance. Consequently, research focus has shifted towards the quest for effective agents of biological origin. The aim of the present study was to assess the antioxidant and antimicrobial potentials of aqueous and organic extracts derived from various parts of Alcea kurdica. Different parts of A. kurdica were obtained and prepared into leaf, flower and root powders. The powders were extracted with aqueous and organic solvents. The antimicrobial activity of these extracts was assessed against bacterial pathogens using the agar well-diffusion assay. Additionally, the antioxidant effects of the extracts were evaluated using the
... Show MoreIn this work, composite materials were prepared by mixing different concentrations of ferrites with polyacrylonitrile (PAN) polymer. Using the electrospinning technique, these composites were deposited on a p-type silicon wafer. The prepared samples demonstrated nanofibers in both pure PAN polymers and their composites with ferrite. Prior to examining the humidity sensing effectiveness with a percentage of relative humidity at a frequency of 10 kHz, based on ambient temperature and a relative humidity range of 50–100%, the composite nanofibers demonstrated stronger humidity sensing compared to the pure PAN nanofibers, which demonstrated a powerful resistance response. More precisely, the PAN@ferrite nanocomposite showed a broad adsorption
... Show MoreIn this study, synthesis of polymer Nanocomposites through the blending of prepared polymers with polyvinyl alcohol (a synthetic polymer) or chitosan (a natural polymer) then mixed with nano oxide silica by many steps. The new compound [I] was obtained via reaction of 3,3’-dimethoxybiphenyl-4,4’-diamine as starting material with malic anhydride in DMF then treatment with ammonium persulfate (NH4 )2 S2 O8 (as the initiator) in order to produce polymer [II]. Also, we prepared new polymers [III-V] by using the same starting material (3,3’-dimethoxybiphenyl-4,4’-diamine) with glutaric acid or adipic acid or isophthalic acid in DMF and pyridine. In this study, new polymer blending [VI-IX] and [X-XIII] were synthesized from a prepared pol
... Show MoreIn this work, an explicit formula for a class of Bi-Bazilevic univalent functions involving differential operator is given, as well as the determination of upper bounds for the general Taylor-Maclaurin coefficient of a functions belong to this class, are established Faber polynomials are used as a coordinated system to study the geometry of the manifold of coefficients for these functions. Also determining bounds for the first two coefficients of such functions.
In certain cases, our initial estimates improve some of the coefficient bounds and link them to earlier thoughtful results that are published earlier.
Pseudomonas aeruginosa is a Gram-negative opportunistic pathogen and a model bacterium for studying virulence and bacterial social traits. While it can be isolated in low numbers from a wide variety of environments including soil and water, it can readily be found in almost any human/animal-impacted environment. It is a major cause of illness and death in humans with immunosuppressive and chronic conditions, and infections in these patients are difficult to treat due to a number of antibiotic resistance mechanisms and the organism’s propensity to form multicellular biofilms. One hundred twenty clinical samples and forty hospital environmental samples (various sources) were collected from hospitals in Baghdad city during the period from Oc
... Show More