Credit card fraud has become an increasing problem due to the growing reliance on electronic payment systems and technological advances that have improved fraud techniques. Numerous financial institutions are looking for the best ways to leverage technological advancements to provide better services to their end users, and researchers used various protection methods to provide security and privacy for credit cards. Therefore, it is necessary to identify the challenges and the proposed solutions to address them. This review provides an overview of the most recent research on the detection of fraudulent credit card transactions to protect those transactions from tampering or improper use, which includes imbalance classes, concept drift, and verification latency problems using machine learning and deep learning. It also provides valuable information for academic and industrial researchers and opens new avenues for research aimed at developing robust fraud detection systems.
The major of DDoS attacks use TCP protocol and the TCP SYN flooding attack is the most common one among them. The SYN Cookie mechanism is used to defend against the TCP SYN flooding attack. It is an effective defense, but it has a disadvantage of high calculations and it doesn’t differentiate spoofed packets from legitimate packets. Therefore, filtering the spoofed packet can effectively enhance the SYN Cookie activity. Hop Count Filtering (HCF) is another mechanism used at the server side to filter spoofed packets. This mechanism has a drawback of being not a perfect and final solution in defending against the TCP SYN flooding attack. An enhanced mechanism of Integrating and combining the SYN Cookie with Hop Count Filtering (HCF) mech
... Show MoreSpraying pesticides is one of the most common procedures that is conducted to control pests. However, excessive use of these chemicals inversely affects the surrounding environments including the soil, plants, animals, and the operator itself. Therefore, researchers have been encouraged to...
Objective(s): The study aims to assess the early detection of early detection of first degree relatives to type-II
diabetes mellitus throughout the diagnostic tests of Glycated Hemoglobin A1C. (HgbA1C), Oral Glucose Tolerance
Test (OGTT) and to find out the relationship between demographic data and early detection of first degree
relatives to type-II diabetes mellitus.
Methodology: A purposive "non-probability" sample of (200) subjects first degree relatives to type-II diabetes
mellitus was selected from National Center for Diabetes Mellitus/Al-Mustansria University and Specialist Center
for Diabetes Mellitus and Endocrine Diseases/Al-kindy. These related persons have presented the age of (40-70)
years old. A questio
In recent years, the world witnessed a rapid growth in attacks on the internet which resulted in deficiencies in networks performances. The growth was in both quantity and versatility of the attacks. To cope with this, new detection techniques are required especially the ones that use Artificial Intelligence techniques such as machine learning based intrusion detection and prevention systems. Many machine learning models are used to deal with intrusion detection and each has its own pros and cons and this is where this paper falls in, performance analysis of different Machine Learning Models for Intrusion Detection Systems based on supervised machine learning algorithms. Using Python Scikit-Learn library KNN, Support Ve
... Show MoreRecently, the phenomenon of the spread of fake news or misinformation in most fields has taken on a wide resonance in societies. Combating this phenomenon and detecting misleading information manually is rather boring, takes a long time, and impractical. It is therefore necessary to rely on the fields of artificial intelligence to solve this problem. As such, this study aims to use deep learning techniques to detect Arabic fake news based on Arabic dataset called the AraNews dataset. This dataset contains news articles covering multiple fields such as politics, economy, culture, sports and others. A Hybrid Deep Neural Network has been proposed to improve accuracy. This network focuses on the properties of both the Text-Convolution Neural
... Show MoreAn intrusion detection system (IDS) is key to having a comprehensive cybersecurity solution against any attack, and artificial intelligence techniques have been combined with all the features of the IoT to improve security. In response to this, in this research, an IDS technique driven by a modified random forest algorithm has been formulated to improve the system for IoT. To this end, the target is made as one-hot encoding, bootstrapping with less redundancy, adding a hybrid features selection method into the random forest algorithm, and modifying the ranking stage in the random forest algorithm. Furthermore, three datasets have been used in this research, IoTID20, UNSW-NB15, and IoT-23. The results are compared with the three datasets men
... Show MoreTo determine the relationship between herpes simplex virus 1, 2 and neurological disorders, sixty samples from patients with neurological diseases were collected (40 patients with Multiple sclerosis and 20 patients with Parkinson’s disease) all of whom attended both the Neurological science Hospital as well as the Neuropathology consultation Department in Baghdad Hospital In Iraq. The samples were collected in the time frame between November 2017 and April 2018. The ages of the patients that were investigated were between (17-76) years and compared to a control group consisting of 25 samples collected from apparently healthy individuals. All the studied groups were subjected to the measurement of anti-HSV 1, 2 IgG antibodies by the means
... Show MoreThis study was carried out for direct detection of typhi and some of its multidrug resistance genes(tem,capt,gyrA&sul2)which encode for resistance to (Ampicillin, Chloramphenicol,Ciprofioxacin,Co-trimoxazole)by using Polymerase Chain Reaction technique .(71)blood samples for people suffering from typhoid fever symptoms depending on the clinical examination and (25)for control were collected. The results investigation for flic gene which encode for flagellin protein indicated that only (19)with percentage of (26,76%)gave appositive results while all control had a negative ones. Investigation for antibiotic resistance drug in samples which show positive results for flic gene showed that there is a multidrug for all antibiotics with (94.7
... Show MoreWe have investigated twenty five patients with type-2 diabetes mellitus aged (35-60) years and fifteen healthy persons as control group to detect Anti-Helicobacter pylori IgG antibody. All studied groups were carried out to measure fasting blood sugar, anti- Glutamic acid decarboxylase (GAD), anti-? islets cells antibody by IFAT, Anti-H. pylori IgG antibody by ELISA technique. There was significant elevation in the concentration of fasting blood sugar than in control group (P < 0.05), the patients had negative results for anti-GAD antibody and anti- ? islets cells antibody, there were significant differences (P < 0.05) of anti-H. pylori IgG antibody in 28 % of patients had type-2 diabetes than control group. This lead to suggestion that typ
... Show MoreSeawater might serve as a fresh‐water supply for future generations to help meet the growing need for clean drinking water. Desalination and waste management using newer and more energy intensive processes are not viable options in the long term. Thus, an integrated and sustainable strategy is required to accomplish cost‐effective desalination via wastewater treatment. A microbial desalination cell (MDC) is a new technology that can treat wastewater, desalinate saltwater, and produce green energy simultaneously. Bio‐electrochemical oxidation of wastewater organics creates power using this method. Desalination and the creation of value‐added by‐products are expected because of this ionic mov