Hookah smoking has become very popular in Iraq among women and men. Hookah tobacco contains natural radioactive elements, such as radon, radium, and uranium, as well as toxic elements, such as polonium, which are released during the combustion of tobacco and are inhaled by smoking. Most reviews focus on hookah tobacco, and only a few have investigated the blood of hookah smokers. In this study, a CR-39 detector was used to measure radon, radium, and polonium concentrations and conduct risk assessments in female hookah smokers of different ages. The results show that the concentrations of radon-222, polonium-218, and polonium-214 varied between 61.62 and 384.80, 5.45–33.64 on the wall of the can, and 2.43–15.00 Bq/m3 on the surface of the detector, respectively. The effective radium-226 concentration varied between 4.52 and 56.31 Bq/kg. The absorbed effective dose varied between 1.55 and 9.71 mSv/y, which is within the recommended limit (3–10 mSv/y) by International Commission on Radiological Protection (ICRP). The average case of lung cancer 107.91 cppp, which exceeds the European Union (EU) limit (96.9–104.8 cppp). The rates of radon activity and radon exhalation from the intake of a natural radionuclide due to hookah smoking in a female’s blood were calculated and discussed. This study aimed to establish preliminary results on the risks of radioactivity concentrations and assess the dose in the blood of women who smoke hookah and assess the possibility of developing cancer.
Lung cancer is one of the most serious and prevalent diseases, causing many deaths each year. Though CT scan images are mostly used in the diagnosis of cancer, the assessment of scans is an error-prone and time-consuming task. Machine learning and AI-based models can identify and classify types of lung cancer quite accurately, which helps in the early-stage detection of lung cancer that can increase the survival rate. In this paper, Convolutional Neural Network is used to classify Adenocarcinoma, squamous cell carcinoma and normal case CT scan images from the Chest CT Scan Images Dataset using different combinations of hidden layers and parameters in CNN models. The proposed model was trained on 1000 CT Scan Images of cancerous and non-c
... Show MoreObjective: To evaluate knowledge towards smoking and its relationship with lung cancer among members of
Baghdad Nursing College.
Methodology: The study comprised 100 affiliates from the College of Nursing/ University of Baghdad that
included students, teaching staff and employees. All data was collected through a structured questionnaire
prepared by the National Cancer Research Center which were answered during a scientific symposium
organized by the center on lung Cancer Awareness in March 2016.The data were analyzed by using the SPSS,
version 22
Results: The age of the respondents ranged from (19-64 years); 76% were females and only 4% were smokers.
The results showed that the mean score for the level of knowled
In this study, the activity concentrations of indoor radon, thoron
and their progeny have been measured in air for 61 different
locations of Al-Maddan city using twin cup dosimeter. Furthermore,
some useful parameters concerning the health hazards have been
estimated; working level month (WLM), annual effective dose (Eff),
and excess lung cancer per million person per year (ELC).The results
show that the values of radon gas levels in the investigated districts
varied from 56.28 to 194.43Bq/m3with an overall average value
132.96Bq/m3, while 0.313 to 1.085 for WLM with an overall average
0.740, respectively. The value of Eff and ELC have been found to
vary from 1.420 to 4.918 mSv/y with an overall average valu
Objective To highlight the main demographic characteristics and clinical profiles of female patients registered with breast cancer in Iraq; focusing on the impact of age.Methods This retrospective study enrolled 1172 female patients who were diagnosed with breast cancer at the Main Center for Early Detection of Breast Cancer/Medical City Teaching Hospital in Baghdad. Data were extracted from an established information system, developed by the principal author under supervision of WHO, that was based on valid clinical records of Iraqi patients affected by breast cancer. The recorded information regarding clinical examination comprised positive palpable lumps, bloody nipple discharge, skin changes, bilateral breast involvement, tumor
... Show MoreObjectives: To assess the relation between breast cancer & blood groups, identify the importance of women
age group and the relation of age with breast cancer.
Methodology: The study was performed on (115) women who were diagnosed with breast cancer in different
stages of disease and different ages. Blood samples were taken from them to demonstrate their blood groups and
(20) fresh tumor tissue samples were obtained; the tumor tissue used as a source of lectin for hemagglutinate
with erythrocyte of different blood groups. The study conducted at Baghdad Teaching Hospital and Radiation &
Nuclear Medicine Hospital from January, 2007 through June 2007.
Results: The study shows that the highest percentage of women
Cocoon of larva
The prospective study has been designed to determine some biomarkers in Iraqi female patients with
breast cancer. The current study contained 30 patients whose tissue samples have been collected from
hospitals in Medical City in Baghdad after consent patients themselves and used immunohistochemical
technique to determine these markers. The results showed a significant correlation between ER and PR tissue
markers (Sig = 0.000) and a significant correlation between cyclin E phenotype and cyclin E intensity (Sig =
0.001).
Problem: Cancer is regarded as one of the world's deadliest diseases. Machine learning and its new branch (deep learning) algorithms can facilitate the way of dealing with cancer, especially in the field of cancer prevention and detection. Traditional ways of analyzing cancer data have their limits, and cancer data is growing quickly. This makes it possible for deep learning to move forward with its powerful abilities to analyze and process cancer data. Aims: In the current study, a deep-learning medical support system for the prediction of lung cancer is presented. Methods: The study uses three different deep learning models (EfficientNetB3, ResNet50 and ResNet101) with the transfer learning concept. The three models are trained using a
... Show More