Preferred Language
Articles
/
yBYf0osBVTCNdQwCkOD8
Efficient Iris Image Recognition System Based on Machine Learning Approach

HM Al-Dabbas, RA Azeez, AE Ali, IRAQI JOURNAL OF COMPUTERS, COMMUNICATIONS, CONTROL AND SYSTEMS ENGINEERING, 2023

View Publication
Publication Date
Fri Jun 24 2022
Journal Name
Iraqi Journal Of Science
The Design of Efficient Algorithm for Face Recognition Based on Hybrid PCA-Wavelet Transform

In modern times face recognition is one of the vital sides for computer vision. This is due to many reasons involving availability and accessibility of technologies and commercial applications. Face recognition in a brief statement is robotically recognizing a person from an image or video frame. In this paper, an efficient face recognition algorithm is proposed based on the benefit of wavelet decomposition to extract the most important and distractive features for the face and Eigen face method to classify faces according to the minimum distance with feature vectors. Faces94 data base is used to test the method. An excellent recognition with minimum computation time is obtained with accuracy reaches to 100% and recognition time decrease

... Show More
View Publication Preview PDF
Publication Date
Thu Feb 28 2019
Journal Name
Iraqi Journal Of Science
Arabic Handwriting Word Recognition Based on Scale Invariant Feature Transform and Support Vector Machine

Offline Arabic handwritten recognition lies in a major field of challenge due to the changing styles of writing from one individual to another. It is difficult to recognize the Arabic handwritten because of the same appearance of the different characters.  In this paper a proposed method for Offline Arabic handwritten recognition. The   proposed method for recognition hand-written Arabic word without segmentation to sub letters based on feature extraction scale invariant feature transform (SIFT) and   support vector machines (SVMs) to enhance the recognition accuracy. The proposed method  experimented using (AHDB) database. The experiment result  show  (99.08) recognition  rate.

View Publication Preview PDF
Publication Date
Tue Oct 01 2019
Journal Name
2019 Ieee 9th International Conference On System Engineering And Technology (icset)
A Digital Signature System Based on Real Time Face Recognition

This study proposed a biometric-based digital signature scheme proposed for facial recognition. The scheme is designed and built to verify the person’s identity during a registration process and retrieve their public and private keys stored in the database. The RSA algorithm has been used as asymmetric encryption method to encrypt hashes generated for digital documents. It uses the hash function (SHA-256) to generate digital signatures. In this study, local binary patterns histograms (LBPH) were used for facial recognition. The facial recognition method was evaluated on ORL faces retrieved from the database of Cambridge University. From the analysis, the LBPH algorithm achieved 97.5% accuracy; the real-time testing was done on thirty subj

... Show More
Scopus (8)
Crossref (2)
Scopus Clarivate Crossref
View Publication Preview PDF
Publication Date
Wed Feb 16 2022
Journal Name
Iraqi Journal Of Science
Efficient method to Recognition of Anemia Images based on Moment Invariants and Decision tree classifier

Anemia is one of the common types of blood diseases, it lead to lack of number of RBCs (Red Blood Cell) and amount hemoglobin level in the blood is lower than normal.
In this paper a new algorithm is presented to recognize Anemia in digital images based on moment variant. The algorithm is accomplished using the following phases: preprocessing, segmentation, feature extraction and classification (using Decision Tree), the extracted features that are used for classification are Moment Invariant and Geometric Feature.
The Best obtained classification rates was 84% is obtained when using Moment Invariants features and 74 % is obtained when using Geometric Feature. Results indicate that the proposed algorithm is very effective in detect

... Show More
View Publication Preview PDF
Publication Date
Sat Jun 01 2024
Journal Name
International Journal Of Advanced And Applied Sciences
High-accuracy models for iris recognition with merging features

Due to advancements in computer science and technology, impersonation has become more common. Today, biometrics technology is widely used in various aspects of people's lives. Iris recognition, known for its high accuracy and speed, is a significant and challenging field of study. As a result, iris recognition technology and biometric systems are utilized for security in numerous applications, including human-computer interaction and surveillance systems. It is crucial to develop advanced models to combat impersonation crimes. This study proposes sophisticated artificial intelligence models with high accuracy and speed to eliminate these crimes. The models use linear discriminant analysis (LDA) for feature extraction and mutual info

... Show More
Scopus Crossref
View Publication
Publication Date
Sat Jan 01 2022
Journal Name
Journal Of Cybersecurity And Information Management
Machine Learning-based Information Security Model for Botnet Detection

Botnet detection develops a challenging problem in numerous fields such as order, cybersecurity, law, finance, healthcare, and so on. The botnet signifies the group of co-operated Internet connected devices controlled by cyber criminals for starting co-ordinated attacks and applying various malicious events. While the botnet is seamlessly dynamic with developing counter-measures projected by both network and host-based detection techniques, the convention techniques are failed to attain sufficient safety to botnet threats. Thus, machine learning approaches are established for detecting and classifying botnets for cybersecurity. This article presents a novel dragonfly algorithm with multi-class support vector machines enabled botnet

... Show More
Scopus (4)
Crossref (2)
Scopus Crossref
View Publication
Publication Date
Sun Sep 24 2023
Journal Name
Journal Of Al-qadisiyah For Computer Science And Mathematics
Iris Data Compression Based on Hexa-Data Coding

Iris research is focused on developing techniques for identifying and locating relevant biometric features, accurate segmentation and efficient computation while lending themselves to compression methods. Most iris segmentation methods are based on complex modelling of traits and characteristics which, in turn, reduce the effectiveness of the system being used as a real time system. This paper introduces a novel parameterized technique for iris segmentation. The method is based on a number of steps starting from converting grayscale eye image to a bit plane representation, selection of the most significant bit planes followed by a parameterization of the iris location resulting in an accurate segmentation of the iris from the origin

... Show More
Crossref
View Publication
Publication Date
Mon Nov 29 2021
Journal Name
Iraqi Journal Of Science
An Accurate Handwritten Digits Recognition system Based on DWT and FCT

In this paper an accurate Indian handwritten digits recognition system is
proposed. The system used three proposed method for extracting the most effecting
features to represent the characteristic of each digit. Discrete Wavelet Transform
(DWT) at level one and Fast Cosine Transform (FCT) is used for features extraction
from the thinned image. Besides that, the system used a standard database which is
ADBase database for evaluation. The extracted features were classified with KNearest
Neighbor (KNN) classifier based on cityblock distance function and the
experimental results show that the proposed system achieved 98.2% recognition
rate.

Crossref
View Publication Preview PDF
Publication Date
Sun Feb 25 2024
Journal Name
Baghdad Science Journal
Simplified Novel Approach for Accurate Employee Churn Categorization using MCDM, De-Pareto Principle Approach, and Machine Learning

Churning of employees from organizations is a serious problem. Turnover or churn of employees within an organization needs to be solved since it has negative impact on the organization. Manual detection of employee churn is quite difficult, so machine learning (ML) algorithms have been frequently used for employee churn detection as well as employee categorization according to turnover. Using Machine learning, only one study looks into the categorization of employees up to date.  A novel multi-criterion decision-making approach (MCDM) coupled with DE-PARETO principle has been proposed to categorize employees. This is referred to as SNEC scheme. An AHP-TOPSIS DE-PARETO PRINCIPLE model (AHPTOPDE) has been designed that uses 2-stage MCDM s

... Show More
Scopus (1)
Scopus Crossref
View Publication Preview PDF
Publication Date
Sun Feb 25 2024
Journal Name
Baghdad Science Journal
Oil spill classification based on satellite image using deep learning techniques

 An oil spill is a leakage of pipelines, vessels, oil rigs, or tankers that leads to the release of petroleum products into the marine environment or on land that happened naturally or due to human action, which resulted in severe damages and financial loss. Satellite imagery is one of the powerful tools currently utilized for capturing and getting vital information from the Earth's surface. But the complexity and the vast amount of data make it challenging and time-consuming for humans to process. However, with the advancement of deep learning techniques, the processes are now computerized for finding vital information using real-time satellite images. This paper applied three deep-learning algorithms for satellite image classification

... Show More
Scopus (1)
Scopus Crossref
View Publication Preview PDF