In this work, porous silicon gas sensor hs been fabricated on n-type crystalline silicon (c-Si) wafers of (100) orientation denoted by n-PS using electrochemical etching (ECE) process at etching time 10 min and etching current density 40 mA/cm2. Deposition of the catalyst (Cu) is done by immersing porous silicon (PS) layer in solution consists of 3ml from (Cu) chloride with 4ml (HF) and 12ml (ethanol) and 1 ml (H2O2). The structural, morphological and gas sensing behavior of porous silicon has been studied. The formation of nanostructured silicon is confirmed by using X-ray diffraction (XRD) measurement as well as it shows the formation of an oxide silicon layer due to chemical reaction. Atomic force microscope for PS illustrates that the pores have sphere-like shape and the porous layers have sponge-like appearance. Sensing behavior is studied for PS before and after fictionalization with copper at different operating temperatures and it is found that the maximum sensitivity is (64516.82%) after fictionalization with Cu at T=250 ºC.
Background: Infection with sexually
transmitted diseases is broad and includes
bacterial, viral and protozoa infection.
Large number of infected people goes
untreated because of symptomatic or
unrecognized infections.
Patients and methods: Forty five
patients was complaining from infertility
(primary or secondary), consulting
Kammal El-Sammari Hospital for
infertility from May - 2008 to February -
2009. Control group consisted of twenty
fertile women that consulting private clinic
for checking. Four swabs were taken from
each woman in two groups. Two swabs
were taken from posterior fornix of the
vagina (High vaginal swab) and the last
two were taken from endocervical canal.
First swab
Structure type and disorder have become important questions in catalyst design, with the most active catalysts often noted to be “disordered” or “amorphous” in nature. To quantify the effects of disorder and structure type systematically, a test set of manganese(III,IV) oxides was developed and their reactivity as oxidants and catalysts tested against three substrates: methylene blue, hydrogen peroxide, and water. We find that disorder destabilizes the materialsthermodynamically, making them stronger chemical oxidantsbut not necessarily better catalysts. For the disproportionation of H2O2 and the oxidative decomposition of methylene blue, MnOx-mediated direct oxidation competes with catalytically mediated oxidation, making the most
... Show MoreAn experimental work has been done to study the major factors that affect the axial dispersion of some hydrocarbons during liquid-liquid miscible displacement. Kerosene and gas oil are used as displacing phase while seven liquid hydrocarbons of high purity represent the displaced phase, three of the liquids are aromatics and the rest are of paraffinic base. In conducting the experiments, two packed beds of different porosity and permeability are used as porous media.
The results showed that the displacement process is not a piston flow, breakthrough of displacing fluids are shown before one pore volume has been injected. The processes are stable with no evidence of viscous fingering.
Dispersion model as a
... Show MoreIn the present work, Response Surface Methodology (RSM) was utilized to optimize process variables and find the best circumstances for indirect electrochemical oxidation of mimicked wastewater to remove phenol contaminants using prepared ternary composite electrode. The electrodeposition process is used for the synthesis of a ternary composite electrode of Mn, Co, and Ni oxides. The selected concentrations of metal salts of these elements were 0.05, 0.1, and 1.5 M, with constant molar ratio, current density, and electrolysis time of 1:1:1, 25 mA/cm2, and 2 h. Interestedly, the gathered Mn-Co-Ni oxides were deposited at both the anode and cathode. X-ray diffraction (XRD) and scanning electron microscopy (SEM) facilitated the qualitative char
... Show MoreWe investigate the interaction of proton with a solid target, describing the wake effects by taking fitted parameters with experimental values of energy loss function ELF for copper using the dielectric function of random phase approximation (RPA). The results exhibited a damped oscillatory behavior in the longitudinal direction behind the projectile. In addition, the wake potential becomes asymmetric around the z-axis with proton velocity values higher than Fermi velocity, as well as it depends on the position of projectile in cylindrical coordinates.
This study was conducted to investigate the antibacterial activity of green synthesized copper oxide nanoparticles (CuO NPs) using Aloe vera. Initially, bacteria were collected from clinical samples of patients having otitis media infection and the isolates were identified at the species level following biochemical tests. Copper oxide nanoparticles were prepared by green synthesis using Aloe vera leaves and characterized using UV- visible spectroscopy at 260 nm peak. The shape and size were determined by using transmission electron microscopy (TEM) and the dimensions of the particles were more precisely determined by using scanning electron microscopy (SEM) and x-ray diffraction (XRD). Different concentrations of nanopa
... Show MoreA total of 90 stool sample was collected from patients with gastroenteritis to
detect adenovirus antigen among diarrhea cases. They were tested by general stool
examination (GSE), rapid immunochromatographic test and Enzyme Linked
Immunosorbent Assay (ELISA). GSE showed that adenovirus gastroenteritis
infection resulted in non-bloody diarrhea, the existence of RBCs in 7% and Pus in
37% of the samples, Entamoeba histolytica trophozoite and cyst were seen in 3%
and 2% of the samples respectively. The rapid test showed that 21% of samples
were positive for rotavirus, 8% for adenovirus and 3% for astrovirus. Meanwhile,
the ELISA test showed that adenovirus was positive in 9% of the samples. These
findings establish
Titanium alloy (Ti-6Al-4V or Gr.23) was widely used as a dental alloy. In the current study, polymerization of eugenol (PE) on Gr.23 titanium alloys was conducted by an electrochemical process before and after being treated by Micro Arc Oxidation (MAO). The formed films were characterized by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), and X-ray diffraction (XRD). The corrosion behavior of Gr.23 alloy in an artificial saliva environment at a temperature range of 293–323 K has been studied and assessed by means of electrochemical polarization and impedance spectroscopy techniques. Three cases are taken into consideration; bare Gr.23, Gr.23 coated by PE, and Gr.23 coated by PE after MAO treatment. The maxi
... Show More