In this work, porous silicon gas sensor hs been fabricated on n-type crystalline silicon (c-Si) wafers of (100) orientation denoted by n-PS using electrochemical etching (ECE) process at etching time 10 min and etching current density 40 mA/cm2. Deposition of the catalyst (Cu) is done by immersing porous silicon (PS) layer in solution consists of 3ml from (Cu) chloride with 4ml (HF) and 12ml (ethanol) and 1 ml (H2O2). The structural, morphological and gas sensing behavior of porous silicon has been studied. The formation of nanostructured silicon is confirmed by using X-ray diffraction (XRD) measurement as well as it shows the formation of an oxide silicon layer due to chemical reaction. Atomic force microscope for PS illustrates that the pores have sphere-like shape and the porous layers have sponge-like appearance. Sensing behavior is studied for PS before and after fictionalization with copper at different operating temperatures and it is found that the maximum sensitivity is (64516.82%) after fictionalization with Cu at T=250 ºC.
Experimental results for the density of states of hydrogenated amorphous silicon due to Jackson et al near the valence and conduction band edges were analyzed using Levenberg-Marquardt nonlinear fitting method. It is found that the density of states of the valence band and the conduction band can be fitted to a simple power law, with a power index 0.60 near the valence band edge, and 0.55 near the conduction band edge. These results indicate a modest but noticeable deviation from the square root law (power index=0.5) which is found in crystalline semiconductors. Analysis of Jackson et al density of states integral J(E) data over about (1.4 eV) of photon energy range, showed a significant fit to a simple power law with a power index of 2.11
... Show MoreCorrosion of Zn-Ni alloy coatings on stainless steel 316 SS in a chloride-sulfate bath with the addition of either triethanolamine or sucrose was examined. A constant cathode potential was used to deposit zinc-nickel alloys, while cyclic voltammetry and potentio-dynamic polarization were used to measure corrosion. In addition, scanning electron microscopy was utilized to analyse Zn-Ni alloy coating surface layers formed with¬out and with additives. The outcomes discovered that the corrosion resistance of Zn-Ni alloy coat¬ings in 3.5 % NaCl solution was highly influenced by adding triethanolamine or sucrose. Decreasing the Zn:Ni molar ratio led to an increase in corrosion resistance. All Zn-Ni alloy coatings were superior to pure Z
... Show MoreThe melting duration in the photovoltaic/phase-change material (PV/PCM) system is a crucial parameter for thermal energy management such that its improvement can realize better energy management in respect to thermal storage capabilities, thermal conditions, and the lifespan of PV modules. An innovative and efficient technique for improving the melting duration is the inclusion of an exterior metal foam layer in the PV/PCM system. For detailed investigations of utilizing different metal foam configurations in terms of their convective heat transfer coefficients, the present paper proposes a newly developed mathematical model for the PV/PCM–metal foam assembly that can readily be implemented with a wide range of operating condition
... Show MoreThis paper investigated the treatment of textile wastewater polluted with aniline blue (AB) by electrocoagulation process using stainless steel mesh electrodes with a horizontal arrangement. The experimental design involved the application of the response surface methodology (RSM) to find the mathematical model, by adjusting the current density (4-20 mA/cm2), distance between electrodes (0.5-3 cm), salt concentration (50-600 mg/l), initial dye concentration (50-250 mg/l), pH value (2-12 ) and experimental time (5-20 min). The results showed that time is the most important parameter affecting the performance of the electrocoagulation system. Maximum removal efficiency (96 %) was obtained at a current density of 20 mA/cm2, distance be
... Show MoreStructure type and disorder have become important questions in catalyst design, with the most active catalysts often noted to be “disordered” or “amorphous” in nature. To quantify the effects of disorder and structure type systematically, a test set of manganese(III,IV) oxides was developed and their reactivity as oxidants and catalysts tested against three substrates: methylene blue, hydrogen peroxide, and water. We find that disorder destabilizes the materialsthermodynamically, making them stronger chemical oxidantsbut not necessarily better catalysts. For the disproportionation of H2O2 and the oxidative decomposition of methylene blue, MnOx-mediated direct oxidation competes with catalytically mediated oxidation, making the most
... Show MoreThis work deals with the production of light fuel cuts of (gasoline, kerosene and gas oil) by catalytic cracking treatment of secondary product mater (heavy vacuum gas oil) which was produced from the vacuum distillation unit in any petroleum refinery. The objective of this research was to study the effect of the catalyst -to- oil ratio parameter on catalytic cracking process of heavy vacuum gas oil feed at constant temperature (450 °C). The first step of this treatment was, catalytic cracking of this material by constructed batch reactor occupied with auxiliary control devices, at selective range of the catalyst –to- oil ratio parameter ( 2, 2.5, 3 and 3.5) respectively. The conversion of heavy vacuum gas
... Show MoreObjective: The aim of this study to detect the correlation between trace elements such as zinc, copper and
spermatogenesis, sperm viability and motility.
Methodology: Serum and semen samples were collected from one hundred twenty patients with age ranged (20-
50 years) attending the high institute for Embryo Research and Infertility Treatment/ Baghdad University, in
addition to thirty fertile males their age comparable to that of patients. The period of this study was from June
2004 until the end of October 2004.
Results: The result of routine seminal fluid analysis of all infertile males was divided according to WHO, (1999) limit
into four groups: Asthenospermia(A), Asthenoteratospermia(AT), Oligoasthenoteratospermi