Preferred Language
Articles
/
xxfvQo8BVTCNdQwCeGfO
ON THE GREEDY RADIAL BASIS FUNCTION NEURAL NETWORKS FOR APPROXIMATION MULTIDIMENSIONAL FUNCTIONS
...Show More Authors

The aim of this paper is to approximate multidimensional functions by using the type of Feedforward neural networks (FFNNs) which is called Greedy radial basis function neural networks (GRBFNNs). Also, we introduce a modification to the greedy algorithm which is used to train the greedy radial basis function neural networks. An error bound are introduced in Sobolev space. Finally, a comparison was made between the three algorithms (modified greedy algorithm, Backpropagation algorithm and the result is published in [16]).

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Thu Oct 29 2020
Journal Name
Toxicological Research
Liver functions in combined models of the gentamicin induced nephrotoxicity and metabolic syndrome induced by high fat or fructose diets: a comparative study
...Show More Authors

View Publication
Scopus (2)
Crossref (3)
Scopus Clarivate Crossref
Publication Date
Sun May 01 2022
Journal Name
International Journal Of Early Childhood Special Education (int-jecs)
Study of some visual functions and functional variables of the respiratory and nervous systems and their relationship to the level of achievement of air rifle shooting
...Show More Authors

The purpose of this paper is to identifying the relationship between some visual functions and the level of achievement of air rifle shooting among young Iraqi female, and identifying the relationship between some functional variables of the respiratory and nervous systems at the level of achievement of air rifle shooting among young Iraqi female. The researchers used the descriptive approach in the correlative relationships style for its suitability and the research problem. The researchers determined the research community by the intentional method represented by (10) young female shooters who represent the national team with air rifle shooting effectiveness, and who represent (100%) of the research community. One of the most important re

... Show More
Publication Date
Sat Oct 29 2022
Journal Name
Current Trends In Geotechnical Engineering And Construction
Optimal Bedding Selection with the Specific Soil Type According to the Thrust Forces Generated in the Water Distribution Networks Using the Restraining Joint System
...Show More Authors

A study has been performed to compare the beddings in which ductile iron pipes are buried. In water transmission systems, bends are usually used in the pipes. According to the prescribed layout, at these bends, unbalanced thrust forces are generated that must be confronted to prevent the separation of the bend from the pipe. The bed condition is a critical and important factor in providing the opposite force to the thrust forces in the restraint joint system. Due to the interaction between the native soil and the bedding layers in which the pipe is buried and the different characteristics between them. Also, the interaction with the pipe material makes it difficult to calculate the real forces opposite to the thrust forces and the way they

... Show More
View Publication
Scopus (2)
Crossref (1)
Scopus Crossref
Publication Date
Thu Apr 01 2021
Journal Name
Chaos, Solitons & Fractals
Modeling and analysis of an SI1I2R epidemic model with nonlinear incidence and general recovery functions of I1
...Show More Authors

In this paper, we established a mathematical model of an SI1I2R epidemic disease with saturated incidence and general recovery functions of the first disease I1. Considering the basic reproduction number, we obtained conditions for both disease-free and co-existing cases. The equilibrium points local stability is verified by using the Routh-Hurwitz criterion, while for the global stability, we used a suitable Lyapunov function to analyze the endemic spread of the positive equilibrium point. Moreover, we carried out the local bifurcation around both equilibrium points (disease-free and co-existing), where we obtained that the disease-free equilibrium point undergoes a transcritical bifurcation. We conduct numerical simulations that suppo

... Show More
View Publication
Publication Date
Thu Nov 03 2022
Journal Name
Sensors
A Novel Application of Deep Learning (Convolutional Neural Network) for Traumatic Spinal Cord Injury Classification Using Automatically Learned Features of EMG Signal
...Show More Authors

In this study, a traumatic spinal cord injury (TSCI) classification system is proposed using a convolutional neural network (CNN) technique with automatically learned features from electromyography (EMG) signals for a non-human primate (NHP) model. A comparison between the proposed classification system and a classical classification method (k-nearest neighbors, kNN) is also presented. Developing such an NHP model with a suitable assessment tool (i.e., classifier) is a crucial step in detecting the effect of TSCI using EMG, which is expected to be essential in the evaluation of the efficacy of new TSCI treatments. Intramuscular EMG data were collected from an agonist/antagonist tail muscle pair for the pre- and post-spinal cord lesi

... Show More
View Publication
Scopus (11)
Crossref (12)
Scopus Clarivate Crossref
Publication Date
Fri Apr 12 2019
Journal Name
Journal Of Economics And Administrative Sciences
Compare between simex and Quassi-likelihood methods in estimation of regression function in the presence of measurement error
...Show More Authors

       In recent years, the attention of researchers has increased of semi-parametric regression models, because it is possible to integrate the parametric and non-parametric regression models in one and then form a regression model has the potential to deal with the cruse of dimensionality in non-parametric models that occurs through the increasing of explanatory variables. Involved in the analysis and then decreasing the accuracy of the estimation. As well as the privilege of this type of model with flexibility in the application field compared to the parametric models which comply with certain conditions such as knowledge of the distribution of errors or the parametric models may

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sat Jun 06 2020
Journal Name
Journal Of The College Of Education For Women
Image classification with Deep Convolutional Neural Network Using Tensorflow and Transfer of Learning
...Show More Authors

The deep learning algorithm has recently achieved a lot of success, especially in the field of computer vision. This research aims to describe the classification method applied to the dataset of multiple types of images (Synthetic Aperture Radar (SAR) images and non-SAR images). In such a classification, transfer learning was used followed by fine-tuning methods. Besides, pre-trained architectures were used on the known image database ImageNet. The model VGG16 was indeed used as a feature extractor and a new classifier was trained based on extracted features.The input data mainly focused on the dataset consist of five classes including the SAR images class (houses) and the non-SAR images classes (Cats, Dogs, Horses, and Humans). The Conv

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Sat Jan 01 2022
Journal Name
Ssrn Electronic Journal
The Prospective of Artificial Neural Network (ANN’s) Model Application to Ameliorate Management of Post Disaster Engineering Projects
...Show More Authors

Currently and under the COVID-19 which is considered as a kind of disaster or even any other natural or manmade disasters, this study was confirmed to be important especially when the society is proceeding to recover and reduce the risks of as possible as injuries. These disasters are leading somehow to paralyze the activities of society as what happened in the period of COVID-19, therefore, more efforts were to be focused for the management of disasters in different ways to reduce their risks such as working from distance or planning solutions digitally and send them to the source of control and hence how most countries overcame this stage of disaster (COVID-19) and collapse. Artificial intelligence should be used when there is no practica

... Show More
View Publication
Crossref (3)
Crossref
Publication Date
Sun Mar 01 2020
Journal Name
Baghdad Science Journal
Discussing Fuzzy Reliability Estimators of Function of Mixed Probability Distribution By Simulation
...Show More Authors

This paper deals  with constructing mixed probability distribution  from exponential with scale parameter (β) and also Gamma distribution with (2,β), and the mixed proportions are (  .first of all, the probability density function (p.d.f) and also cumulative distribution function (c.d.f) and also the reliability function are obtained. The parameters of mixed distribution, ( ,β)  are estimated by three different methods, which are  maximum likelihood, and  Moments method,as well proposed method (Differential Least Square Method)(DLSM).The comparison is done using simulation procedure, and all the results are explained in tables.

View Publication Preview PDF
Scopus (1)
Scopus Clarivate Crossref
Publication Date
Fri Jan 01 2021
Journal Name
Computers, Materials & Continua
A New Hybrid Feature Selection Method Using T-test and Fitness Function
...Show More Authors

View Publication
Scopus (11)
Crossref (8)
Scopus Clarivate Crossref