The aim of this paper is to approximate multidimensional functions by using the type of Feedforward neural networks (FFNNs) which is called Greedy radial basis function neural networks (GRBFNNs). Also, we introduce a modification to the greedy algorithm which is used to train the greedy radial basis function neural networks. An error bound are introduced in Sobolev space. Finally, a comparison was made between the three algorithms (modified greedy algorithm, Backpropagation algorithm and the result is published in [16]).
In this research an Artificial Neural Network (ANN) technique was applied for the prediction of Ryznar Index (RI) of the flowing water from WTPs in Al-Karakh side (left side) in Baghdad city for year 2013. Three models (ANN1, ANN2 and ANN3) have been developed and tested using data from Baghdad Mayoralty (Amanat Baghdad) including drinking water quality for the period 2004 to 2013. The results indicate that it is quite possible to use an artificial neural networks in predicting the stability index (RI) with a good degree of accuracy. Where ANN 2 model could be used to predict RI for the effluents from Al-Karakh, Al-Qadisiya and Al-Karama WTPs as the highest correlation coefficient were obtained 92.4, 82.9 and 79.1% respectively. For
... Show MoreThe aim of this research is to estimate the area unit function of productivity for the potato crop in Anbar province for the autumn season (2008 / 2009) Anbar province has been chosen as an applied model for the study due to its well known in cultivating potato crop , and the data were collected through a random sample about (10%) from the study society with a (150) farmers, The results indicated that the double logarithmic formula was the best representative of the relationship between crop productivity and independent variables (quantity of potato tubers , quantity of herbicides stuffs, quantity of fertilizer , hours of mechanical labour
... Show MoreThis deals with estimation of Reliability function and one shape parameter (?) of two- parameters Burr – XII , when ?(shape parameter is known) (?=0.5,1,1.5) and also the initial values of (?=1), while different sample shze n= 10, 20, 30, 50) bare used. The results depend on empirical study through simulation experiments are applied to compare the four methods of estimation, as well as computing the reliability function . The results of Mean square error indicates that Jacknif estimator is better than other three estimators , for all sample size and parameter values
At the level of both individuals and companies, Wireless Sensor Networks (WSNs) get a wide range of applications and uses. Sensors are used in a wide range of industries, including agriculture, transportation, health, and many more. Many technologies, such as wireless communication protocols, the Internet of Things, cloud computing, mobile computing, and other emerging technologies, are connected to the usage of sensors. In many circumstances, this contact necessitates the transmission of crucial data, necessitating the need to protect that data from potential threats. However, as the WSN components often have constrained computation and power capabilities, protecting the communication in WSNs comes at a significant performance pena
... Show MoreBackground:
Multiple sclerosis is a chronic disease believed to be the result of autoimmune disorders of the central nervous system, characterised by inflammation, demyelination, and axonal transection, affecting primarily young adults. Disease modifying therapies have become widely used, and the rapid development of these drugs highlighted the need to update our knowledge on their short- and long-term safety profile.
Objective:
The study aim is to evaluate the impact of disease-modifying treatments on thyroid functions and thyroid autoantibodies with subsequent effects on the outcome of the disease.
Materials and Methods:
A retro prospective study
... Show MoreIn this paper, a simple fast lossless image compression method is introduced for compressing medical images, it is based on integrates multiresolution coding along with polynomial approximation of linear based to decompose image signal followed by efficient coding. The test results indicate that the suggested method can lead to promising performance due to flexibility in overcoming the limitations or restrictions of the model order length and extra overhead information required compared to traditional predictive coding techniques.
This paper deals with founding an estimation of best approximation of unbounded functions which satisfied weighted Lipschitz condition with respect to the convex polynomials by means of weighted moduli of smoothness of fractional order  , ( , ) p f t . In addition we prove some properties of weighted moduli of smoothness of fractional order.
This paper is concerned with introducing and studying the o-space by using out degree system (resp. i-space by using in degree system) which are the core concept in this paper. In addition, the m-lower approximations, the m-upper approximations and ospace and i-space. Furthermore, we introduce near supraopen (near supraclosed) d. g.'s. Finally, the supra-lower approximation, supraupper approximation, supra-accuracy are defined and some of its properties are investigated.
In this paper we define and study new generalizations of continuous functions namely, -weakly (resp., w-closure, w-strongly) continuous and the main properties are studies: (a) If f : X®Y is w-weakly (resp., w-closure, w-strongly) continuous, then for any AÌX and any BÌY the restrictions fïA : A®Y and fB : f -1(B)®B are w-weakly (resp., w-closure, w-strongly) continuous. (b) Comparison between deferent forms of generalizations of continuous functions. (c) Relationship between compositions of deferent forms of generalizations of continuous functions. Moreover, we expanded the above generalizations and namely almost w-weakly (resp., w-closure, w-strongly) continuous functions and we state and prove several results concerning it.
