Organic Permeable Base Transistors (OPBTs) reach a very high transit frequency and large on-state currents. However, for a later commercial application of this technology, a high operational stability is essential as well. Here, the stability of OPBTs during continuous cycling and during base bias stress is discussed. It is observed that the threshold voltage of these transistors shifts toward more positive base voltages if stressed by applying a constant potential to the base electrode for prolonged times. With the help of a 2D device simulation, it is proposed that the observed instabilities are due to charges that are trapped on top of an oxide layer formed around the base electrode. These charges are thermally released after removing the stress, and the device reaches its initial performance after around 24–48 h.
The aim of this paper is determine the concentration of the organic oxygen in some organic compounds (Aldehydes ) by the derivative neutron activation analysis technique, and the derivative of the oxygen by the nitrogen equivalent toit and the irradiation of anew sample in flounce (1.73*106 n.cm-2.s-1) by the neutron generator .Then the calculation of the radioactivity which is done by using NaI(Tl) . After that we determine the concentration of nitrogen by calibration curve that includes nitrogen compounds which have apparent chemical and physical characteristics .For comparison the result is done by using keldal method.
A hybrid cadmium sulfide nanoparticles (CdSNPs) electroluminescence (EL) device was fabricated by Phase – Segregated Method and characterized. It was fabricated as layers of (ITO/poly-TPD:CdS ) and (ITO/poly-TPD:CdS /Alq3). Poly-TPD is an excellent Hole Transport Layer (HTL), CdSNPs is an emitting layer and Alq3 as electron transport layer (ETL). The EL of Organic-Inorganic Light Emitting Diode (OILED) was studied at room temperature at 26V. This was achieved according to band-to-band transition in CdSNPs. From the I-V curve behavior, the addition of Alq3 layer decreased the transfer of electrons by about 250 times. The I-V behavior for (poly-TPD/CdS) is exponential with a maximum current of 4500 µA. While, the current i
... Show MoreThe present work aims to study forward osmosis process using different kinds of draw solutions and membranes. Three types of draw solutions (sodium chloride, sodium formate, and sodium acetate) were used in forward osmosis process to evaluate their effectiveness with respect to water flux and reverse salt flux. Experiments conducted in a laboratory-scale forward osmosis (FO) unit in cross flow flat sheet membrane cell. Three types of membranes (Thin film composite (TFC), Cellulose acetate (CA), and Cellulose triacetate (CTA)) were used to determine the water flux under osmotic pressure as a driving force. The effect of temperature, draw solution concentration, feed and draw solution flow rate, and membrane types, were studied with
... Show MoreHigh tunnels, or unheated plastic greenhouses, are becoming increasingly popular among organic vegetable growers across the United States. However, the intensive production typical of these systems presents soil health challenges, including salinization due to high fertilizer or compost inputs coupled with lack of rainfall to leach salts. Legume cover crops may improve soil health in high tunnels by reducing the need for external inputs, while adding organic matter. We tested the soil health effects of a winter hairy vetch (Vicia villosa Roth) cover crop used to replace fertilizer N in an organic tomato cropping system in high tunnels. Studies were replicated across three sites differing in climate and soil type (Kansas, Kentucky, and Minne
... Show MoreAbstract In this study, an investigation is conducted to realise the possibility of organic materials use in radio frequency (RF) electronics for RF-energy harvesting. Iraqi palm tree remnants mixed with nickel oxide nanoparticles hosted in polyethylene, INP substrates, is proposed for this study. Moreover, a metamaterial (MTM) antenna is printed on the created INP substrate of 0.8 mm thickness using silver nanoparticles conductive ink. The fabricated antenna performances are instigated numerically than validated experimentally in terms of S11 spectra and radiation patterns. It is found that the proposed antenna shows an ultra-wide band matching bandwidth to cover the frequencies from 2.4 to 10 GHz with bore-sight gain variation from 2.2 to
... Show MoreWe consider the outflow of water from the peak of a triangular ridge into a channel of finite depth. Solutions are computed for different flow rates and bottom angles. A numerical method is used to compute the flow from the source for small values of flow rate and it is found that there is a maximum flow rate beyond which steady solutions do not seem to exist. Limiting flows are computed for each geometrical configuration. One application of this work is as a model of saline water being returned to the ocean after desalination. References Craya, A. ''Theoretical research on the flow of nonhomogeneous fluids''. La Houille Blanche, (1):22–55, 1949. doi:10.1051/lhb/1949017 Dun, C. R. and Hocking, G. C. ''Withdrawal of fluid through
... Show MoreIn this work semi–empirical method (PM3) calculations are carried out by (MOPAC) computational packages have been employed to calculate the molecular orbital's energies for some organic pollutants. The long– chain quaternary ammonium cations called Iraqi Clays (Bentonite – modified) are used to remove these organic pollutants from water, by adding a small cationic surfactant so as to result in floes which are agglomerates of organobentonite to remove organic pollutants. This calculation which suggests the best surface active material, can be used to modify the adsorption efficiency of aniline , phenol, phenol deriviatives, Tri methyl glycine, ester and pecticides , on Iraqi Clay (bentonite) by comparing the theoretical results w
... Show More