Objectives: Maxillofacial silicone is used to restore abnormalities due to congenital or acquired causes. However, the quality of silicone is far from ideal. This study was aimed at assessing the influence of the addition of cellulose nanofibers (CNFs; several nanometers wide and 2-5 micro m long) on the physical and mechanical characteristics of maxillofacial silicone elastomers. Methods: Two CNF weight percentages (0.5% and 1%) were tested, and 180 specimens were divided into one control and two experimental groups. Each group was subdivided into six subgroups. In each subgroup, ten specimens subjected to each of the following tests: tearing strength, Shore-A hardness, tensile strength, elongation percentage, surface roughness, and color stability. The samples were additionally analyzed with Fourier transform infrared spectroscopy (FTIR) and field emission scanning electronic microscopy (FESEM). Results: The 0.5% CNF group, compared with the control group, exhibited highly significantly greater tearing strength, elongation percentage, hardness Shore-A, and surface roughness, and substantially greater tensile strength. However, color stability did not significantly differ between groups. The 1% CNF group showed significantly greater Shore-A hardness, tear strength, color stability, and surface roughness, and insignificantly lower tensile strength and percentage elongating values, than the control group. FESEM imaging revealed good CNF dispersion. The FTIR spectra indicated that CNFs interacted with silicon through surface functional hydroxyl groups. Conclusion: Addition of 0.5 wt. % CNF to silicone elastomers increased the material’s mechanical tensile strength, tear strength, elongation percentage, and hardness as long as it stayed within the acceptable range for clinical use. Surface roughness increased in direct proportion to the amount of nanofibers added. Moreover, addition of 0.5 wt. % CNF to silicone polymers had insignificant effects on color stability.
This work describes, selenium (Se) films were deposited on clean glass substrates by dc planar magnetron sputtering technique.The dependence of sputtering deposition rate of Se film deposited on pressure and DC power has been studied. The optimum argon pressure has range (4x10-1 -8x10-2 )mbar. The optical properties such as absorption coefficient (α) was determined using the absorbance and transmission measurement from UnicoUV-2102 PC spectrophotometer, at normal incidence of light in the wavelength range of 200-850 nm. And also we calculated optical constants(refractive index (n), dielectric constant (εi,r), and Extinction coefficient (κ) for selenium films.
Obliquely deposited (70o) Bi, Sb, and Bi-Sb alloy thin films have been prepared by thermal
resistive technique. Structural properties of these films were studied using XRD. Their resistance and
voltage responsivity for Nd:YAG and CO2 laser pulses have been recorded as function of operating
temperature between 10 oC and 120 oC. It was found that the maximum responsivity for these detectors
can be obtained at 75 oC. On the other hand, the dependence of responsivity on the width of detectors was
investigated.
In the recent decade, injection of nanoparticles (NPs) into underground formation as liquid nanodispersions has been suggested as a smart alternative for conventional methods in tertiary oil recovery projects from mature oil reservoirs. Such reservoirs, however, are strong candidates for carbon geo-sequestration (CGS) projects, and the presence of nanoparticles (NPs) after nanofluid-flooding can add more complexity to carbon geo-storage projects. Despite studies investigating CO2 injection and nanofluid-flooding for EOR projects, no information was reported about the potential synergistic effects of CO2 and NPs on enhanced oil recovery (EOR) and CGS concerning the interfacial tension (γ) of CO2-oil system. This study thus extensively inves
... Show MoreThe optical energy gap(Eopt) and the width of the tails of localized states in the band gap (?E) for Se:2%Sb thin films prepared by thermal co-evaporation method as a function of annealing temperature are studied in the photon energy range ( 1 to 5.4)eV.Se2%Sb film was found to be indirect transition with energy gap of (1.973,2.077, 2.096, 2.17) eV at annealing temperature (295,370,445,520)K respectively. The Eopt and ?E of Se:2%Sb films as a function of annealing temperature showed an increase in Eopt and a decrease in ?E with increasing the annealing temperature. This behavior may be related to structural defects and dangling bonds.
The study included studying some of the optimum environmental conditions(temperature ,light intensity ) on the production of several green algae Scendesmus quadricauda and Chlorella vulgaris in a selected culture and municipal wastewater . The study also included the recording of growth rate ,doubling time and removal of phosphate and nitrate , maximum rate was recorded to the growth with minimum in doubling time and maximum removal rate of nitrogen-nitrate and phosor- phosphate in each selected culture and municipal wastewater in each species of green algae at 25 C? and a light intensity 380 µ E / m2 / s.
The present work aims to study the combustion characteristics related to syngas-diesel dual-fuel engine operates at lambda value of 1.6 operated by five different replacement ratios (RR) of syngas with diesel, which are (10%, 20%, 30 %, 40 % and 50%). ANSYS Workbench (CFD) was used for simulating the combustion of the syngas-diesel dual-fuel engine. The numerical simulations were carried out on the Ricardo-Hydra diesel engine. The simulation results revealed that the diesel engine’s combustion efficiency was enhanced by increasing the diesel replacement with Syngas fuel. The diesel engine’s combustion efficiency The peak in-cylinder temperature was enhanced from 915.9K to 2790.5K
Nanomaterials enhance the performance of both asphalt binders and asphalt mixtures. They also improve asphalt durability, which reduces resource consumption and environmental impact in the long term associated with the production and transportation of asphalt materials. Thus, this paper studies the effectiveness of Nano Calcium Carbonate (Nano CaCO3) and Nano Hydrated Lime (NHL) as modifiers and examines their impact on ranges from 0% to 10% through comprehensive laboratory tests. Softening point, penetration, storage stability, viscosity, and mass loss due to short-term aging using the Rolling Thin Film Oven Test (RTFO) were performed on asphalt binders. Results indicated a significant improvement in binder stiffness, particularly
... Show MoreThe present study develops the sorption model for simulating the effects of pH and temperature on the uptake of cadmium from contaminated water using waste foundry sand (WFS) by allowing the variation of the maximum adsorption capacity and affinity constant. The presence of two acidic functional groups with the same or different affinity is the basis in the derivation of the two models; Model 1 and Model 2 respectively. The developed Bi-Langmuir model with different affinity (Model 2) has a remarkable ability in the description of process under consideration with coefficient of determination > 0.9838 and sum of squared error < 0.08514. This result is proved by FTIR test where the weak acids responsible of cadmium ions removal
... Show MoreMan has a great role in the development of society in all fields, and therefore the human thought played a great role in its continuous pursuit and insight into the social classes that differ in their privileges, which makes the members of society not reconcile because of that disparity that is not based on human principles, so one class exploits another, and this is what stopped me Rather, it prompted me to choose the topic (class and its impact on society) in order to show the impact of classes on each other negatively and positively, so I work to avoid the first with the recommendations I put forward and offer guidance, and strengthen the second, and after this topic of necessity in a place because of the imbalance and promise of appr
... Show More