Peak ground acceleration (PGA) is one of the critical factors that affect the determination of earthquake intensity. PGA is generally utilized to describe ground motion in a particular zone and is able to efficiently predict the parameters of site ground motion for the design of engineering structures. Therefore, novel models are developed to forecast PGA in the case of the Iraqi database, which utilizes the particle swarm optimization (PSO) approach. A data set of 187 historical ground-motion recordings in Iraq’s tectonic regions was used to build the explicit proposed models. The proposed PGA models relate to different seismic parameters, including the magnitude of the earthquake (Mw), average shear-wave velocity (VS30), focal depth (FD), and nearest epicenter distance (REPi) to a seismic station. The derived PGA models are remarkably simple and straightforward and can be used reliably for pre-design purposes. The proposed PGA models (i.e., models I and II) obtained via the explicit formula produced using the PSO method are highly correlated to the actual PGA records owing to low coefficients of variation (CoV) of approximately 2.12% and 2.06%, and mean values (i.e., close to 1.0) of approximately 1.005 and 1.004. Lastly, high-frequency, low absolute relative error (ARE), which is below 5%, is recorded for the proposed models, thereby showing an acceptable error distribution.
Nuclear emission rates for nucleon-induced reactions are theoretically calculated based on the one-component exciton model that uses state density with non-Equidistance Spacing Model (non-ESM). Fair comparison is made from different state density values that assumed various degrees of approximation formulae, beside the zeroth-order formula corresponding to the ESM. Calculations were made for 96Mo nucleus subjected to (N,N) reaction at Emax=50 MeV. The results showed that the non-ESM treatment for the state density will significantly improve the emission rates calculated for various exciton configurations. Three terms might suffice a proper calculation, but the results kept changing even for ten terms. However, five terms is found to give
... Show MoreCopper and Zinc powders with different particle sizes were subjected to sieving of range (20-100?m) and He-Ne laser system to determine the particle size . 1wt% from each powders was blended carefully with 99wt% from Iraqi oil . Microscopic examination were carried for all samples to reveal the particle size distribution . XRF intensity measurements were conducted for all suspended samples , and the relation between XRF intensity and the particle size was found .
Technique was used to retail for analyzing atom beryllium ion cathode of an atom lithium to six pairs of functions wave which two ?????? and the rest of the casing moderation and to analyze atom lithium ion Mob atom beryllium to three pairs of functions wave pair of casing and the rest of the casing moderation using function wave Hartree Fock and each casing email wascalculate expected values ??....
Diabetes is one of the increasing chronic diseases, affecting millions of people around the earth. Diabetes diagnosis, its prediction, proper cure, and management are compulsory. Machine learning-based prediction techniques for diabetes data analysis can help in the early detection and prediction of the disease and its consequences such as hypo/hyperglycemia. In this paper, we explored the diabetes dataset collected from the medical records of one thousand Iraqi patients. We applied three classifiers, the multilayer perceptron, the KNN and the Random Forest. We involved two experiments: the first experiment used all 12 features of the dataset. The Random Forest outperforms others with 98.8% accuracy. The second experiment used only five att
... Show MoreModern civilization increasingly relies on sustainable and eco-friendly data centers as the core hubs of intelligent computing. However, these data centers, while vital, also face heightened vulnerability to hacking due to their role as the convergence points of numerous network connection nodes. Recognizing and addressing this vulnerability, particularly within the confines of green data centers, is a pressing concern. This paper proposes a novel approach to mitigate this threat by leveraging swarm intelligence techniques to detect prospective and hidden compromised devices within the data center environment. The core objective is to ensure sustainable intelligent computing through a colony strategy. The research primarily focusses on the
... Show MoreThe research dealt with the effect of Kut Barrage on the geomorphological processes and the natural environment system in the course of the Tigris between the cities of Al-Ahrar and Kut in central Iraq. It was clear from the research the contribution of Kut Barrage in changing the surface runoff system between the front and back of the barrage, as well as changing the type of processes and the prevailing geomorphic forms, as the sedimentation activates the front of the barrage and erosion at its back, which affected the change in the morphology of the river, sediment retention at the front of the barrage, the burial of the bottom and reducing the validity of the stream. This also affects the efficiency of the barrage’s work and coastal er
... Show More
Ground Penetrating Radar (GPR) is a nondestructive geophysical technique that uses electromagnetic waves to evaluate subsurface information. A GPR unit emits a short pulse of electromagnetic energy and is able to determine the presence or absence of a target by examining the reflected energy from that pulse. GPR is geophysical approach that use band of the radio spectrum. In this research the function of GPR has been summarized as survey different buried objects such as (Iron, Plastic(PVC), Aluminum) in specified depth about (0.5m) using antenna of 250 MHZ, the response of the each object can be recognized as its shapes, this recognition have been performed using image processi |
<span lang="EN-US">The need for robotics systems has become an urgent necessity in various fields, especially in video surveillance and live broadcasting systems. The main goal of this work is to design and implement a rover robotic monitoring system based on raspberry pi 4 model B to control this overall system and display a live video by using a webcam (USB camera) as well as using you only look once algorithm-version five (YOLOv5) to detect, recognize and display objects in real-time. This deep learning algorithm is highly accurate and fast and is implemented by Python, OpenCV, PyTorch codes and the Context Object Detection Task (COCO) 2020 dataset. This robot can move in all directions and in different places especially in
... Show MoreKnowledge represents the foundation stone for the work of all organizations, are working who leads the thinking of individuals is the ability that leads to behavior based on rationality, it is the work that creates value to the organization and thus gain access to performance winning where that knowledge is a new type of capital based on the thought and experience and is the so-called intellectual capital, which is renewable and is constantly evolving. The study sought to explain the role of the climax knowledge in achieving the highest levels of performance Organizational and then access to the performance winning in educational organizations the study sample, was found to be a co
... Show MoreMaximizing the water productivity for any agricultural system is considered an adaptation to the potential climate change crisis. It is required, especially in arid and semi-arid environments in Iraq. Therefore, this study assessed the potential impact of climate change on the different environments in the Qadissiya and Nineveh provinces. The ensemble of six GCM models employed for the regional climate model of the HCLIM-ALADIN in high-resolution 10*10 km2 and Aqua-Crop was used to examine the response of water productivity and yield of winter wheat. With and without CO2 concentration changing under different water regimes in the near term (2020-2040