Preferred Language
Articles
/
xxYnFIcBVTCNdQwCHTSS
Particle swarm optimization technique-based prediction of peak ground acceleration of Iraq’s tectonic regions

Peak ground acceleration (PGA) is one of the critical factors that affect the determination of earthquake intensity. PGA is generally utilized to describe ground motion in a particular zone and is able to efficiently predict the parameters of site ground motion for the design of engineering structures. Therefore, novel models are developed to forecast PGA in the case of the Iraqi database, which utilizes the particle swarm optimization (PSO) approach. A data set of 187 historical ground-motion recordings in Iraq’s tectonic regions was used to build the explicit proposed models. The proposed PGA models relate to different seismic parameters, including the magnitude of the earthquake (Mw), average shear-wave velocity (VS30), focal depth (FD), and nearest epicenter distance (REPi) to a seismic station. The derived PGA models are remarkably simple and straightforward and can be used reliably for pre-design purposes. The proposed PGA models (i.e., models I and II) obtained via the explicit formula produced using the PSO method are highly correlated to the actual PGA records owing to low coefficients of variation (CoV) of approximately 2.12% and 2.06%, and mean values (i.e., close to 1.0) of approximately 1.005 and 1.004. Lastly, high-frequency, low absolute relative error (ARE), which is below 5%, is recorded for the proposed models, thereby showing an acceptable error distribution.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Mon Jan 27 2020
Journal Name
Iraqi Journal Of Science
Optimal Robot Path Planning using Enhanced Particle Swarm Optimization algorithm

The aim of robot path planning is to search for a safe path for the mobile robot. Even though there exist various path planning algorithms for mobile robots, yet only a few are optimized. The optimized algorithms include the Particle Swarm Optimization (PSO) that finds the optimal path with respect to avoiding the obstacles while ensuring safety. In PSO, the sub-optimal solution takes place frequently while finding a solution to the optimal path problem. This paper proposes an enhanced PSO algorithm that contains an improved particle velocity. Experimental results show that the proposed Enhanced PSO performs better than the standard PSO in terms of solution’s quality. Hence, a mobile robot implementing the proposed algorithm opera

... Show More
Scopus (11)
Crossref (4)
Scopus Crossref
View Publication Preview PDF
Publication Date
Tue Dec 31 2013
Journal Name
Al-khwarizmi Engineering Journal
Design of an Adaptive PID Neural Controller for Continuous Stirred Tank Reactor based on Particle Swarm Optimization

 A particle swarm optimization algorithm and neural network like self-tuning PID controller for CSTR system is presented. The scheme of the discrete-time PID control structure is based on neural network and tuned the parameters of the PID controller by using a particle swarm optimization PSO technique as a simple and fast training algorithm. The proposed method has advantage that it is not necessary to use a combined structure of identification and decision because it used PSO. Simulation results show the effectiveness of the proposed adaptive PID neural control algorithm in terms of minimum tracking error and smoothness control signal obtained for non-linear dynamical CSTR system.

View Publication Preview PDF
Publication Date
Thu Jul 01 2021
Journal Name
Journal Of Physics: Conference Series
Wireless Optimization Algorithm for Multi-floor AP deployment using binary particle swarm optimization (BPSO)
Abstract<p>Optimizing the Access Point (AP) deployment is of great importance in wireless applications owing the requirement to provide efficient and cost-effective communication. Highly targeted by many researchers and academic industries, Quality of Service (QOS) is an important primary parameter and objective in mind along with AP placement and overall publishing cost. This study proposes and investigates a multi-level optimization algorithm based on Binary Particle Swarm Optimization (BPSO). It aims to an optimal multi-floor AP placement with effective coverage that makes it more capable of supporting QOS and cost effectiveness. Five pairs (coverage, AP placement) of weights, signal threshol</p> ... Show More
Scopus Crossref
View Publication
Publication Date
Tue May 28 2019
Journal Name
Al-khwarizmi Engineering Journal
Heuristic D* Algorithm Based on Particle Swarm Optimization for Path Planning of Two-Link Robot Arm in Dynamic Environment

 Finding a path solution in a dynamic environment represents a challenge for the robotics researchers, furthermore, it is the main issue for autonomous robots and manipulators since nowadays the world is looking forward to this challenge. The collision free path for robot in an environment with moving obstacles such as different objects, humans, animals or other robots is considered as an actual problem that needs to be solved.  In addition, the local minima and sharp edges are the most common problems in all path planning algorithms. The main objective of this work is to overcome these problems by demonstrating the robot path planning and obstacle avoidance using D star (D*) algorithm based on Particle Swarm Optimization (PSO)

... Show More
Crossref (7)
Crossref
View Publication Preview PDF
Publication Date
Thu Aug 31 2017
Journal Name
Journal Of Engineering
Enhanced Performance of Consensus Wireless Sensor Controlled System via Particle Swarm Optimization Algorithm

     This paper describes the application of consensus optimization for Wireless Sensor Network (WSN) system. Consensus algorithm is usually conducted within a certain number of iterations for a given graph topology. Nevertheless, the best Number of Iterations (NOI) to reach consensus is varied in accordance with any change in number of nodes or other parameters of . graph topology. As a result, a time consuming trial and error procedure will necessary be applied
to obtain best NOI. The implementation of an intellig ent optimization can effectively help to get the optimal NOI. The performance of the consensus algorithm has considerably been improved by the inclusion of Particle Swarm Optimization (PSO). As a case s

... Show More
View Publication Preview PDF
Publication Date
Tue Jan 30 2024
Journal Name
Iraqi Journal Of Science
Parallel Particle Swarm Optimization Algorithm for Identifying Complex Communities in Biological Networks

    Identification of complex communities in biological networks is a critical and ongoing challenge since lots of network-related problems correspond to the subgraph isomorphism problem known in the literature as NP-hard. Several optimization algorithms have been dedicated and applied to solve this problem. The main challenge regarding the application of optimization algorithms, specifically to handle large-scale complex networks, is their relatively long execution time. Thus, this paper proposes a parallel extension of the PSO algorithm to detect communities in complex biological networks. The main contribution of this study is summarized in three- fold; Firstly, a modified PSO algorithm with a local search operator is proposed

... Show More
Scopus (1)
Scopus Crossref
View Publication Preview PDF
Publication Date
Tue Jan 30 2024
Journal Name
Iraqi Journal Of Science
Parallel Particle Swarm Optimization Algorithm for Identifying Complex Communities in Biological Networks

    Identification of complex communities in biological networks is a critical and ongoing challenge since lots of network-related problems correspond to the subgraph isomorphism problem known in the literature as NP-hard. Several optimization algorithms have been dedicated and applied to solve this problem. The main challenge regarding the application of optimization algorithms, specifically to handle large-scale complex networks, is their relatively long execution time. Thus, this paper proposes a parallel extension of the PSO algorithm to detect communities in complex biological networks. The main contribution of this study is summarized in three- fold; Firstly, a modified PSO algorithm with a local search operator is proposed to d

... Show More
Scopus (1)
Scopus Crossref
View Publication Preview PDF
Publication Date
Wed Oct 28 2015
Journal Name
Journal Of Mathematics And System Science
Crossref
Publication Date
Wed Aug 30 2023
Journal Name
Iraqi Journal Of Science
Community Detection in Modular Complex Networks Using an Improved Particle Swarm Optimization Algorithm

     Community detection is an important and interesting topic for better understanding and analyzing complex network structures. Detecting hidden partitions in complex networks is proven to be an NP-hard problem that may not be accurately resolved using traditional methods. So it is solved using evolutionary computation methods and modeled in the literature as an optimization problem.  In recent years, many researchers have directed their research efforts toward addressing the problem of community structure detection by developing different algorithms and making use of single-objective optimization methods. In this study, we have continued that research line by improving the Particle Swarm Optimization (PSO) algorithm using a

... Show More
Scopus (1)
Scopus Crossref
View Publication Preview PDF
Publication Date
Wed Aug 30 2023
Journal Name
Iraqi Journal Of Science
Community Detection in Modular Complex Networks Using an Improved Particle Swarm Optimization Algorithm

     Community detection is an important and interesting topic for better understanding and analyzing complex network structures. Detecting hidden partitions in complex networks is proven to be an NP-hard problem that may not be accurately resolved using traditional methods. So it is solved using evolutionary computation methods and modeled in the literature as an optimization problem.  In recent years, many researchers have directed their research efforts toward addressing the problem of community structure detection by developing different algorithms and making use of single-objective optimization methods. In this study, we have continued that research line by improving the Particle Swarm Optimization (PSO) algorithm using a local

... Show More
Scopus (1)
Scopus Crossref
View Publication Preview PDF