Peak ground acceleration (PGA) is one of the critical factors that affect the determination of earthquake intensity. PGA is generally utilized to describe ground motion in a particular zone and is able to efficiently predict the parameters of site ground motion for the design of engineering structures. Therefore, novel models are developed to forecast PGA in the case of the Iraqi database, which utilizes the particle swarm optimization (PSO) approach. A data set of 187 historical ground-motion recordings in Iraq’s tectonic regions was used to build the explicit proposed models. The proposed PGA models relate to different seismic parameters, including the magnitude of the earthquake (Mw), average shear-wave velocity (VS30), focal depth (FD), and nearest epicenter distance (REPi) to a seismic station. The derived PGA models are remarkably simple and straightforward and can be used reliably for pre-design purposes. The proposed PGA models (i.e., models I and II) obtained via the explicit formula produced using the PSO method are highly correlated to the actual PGA records owing to low coefficients of variation (CoV) of approximately 2.12% and 2.06%, and mean values (i.e., close to 1.0) of approximately 1.005 and 1.004. Lastly, high-frequency, low absolute relative error (ARE), which is below 5%, is recorded for the proposed models, thereby showing an acceptable error distribution.
The physical substance at high energy level with specific circumstances; tend to behave harsh and complicated, meanwhile, sustaining equilibrium or non-equilibrium thermodynamic of the system. Measurement of the temperature by ordinary techniques in these cases is not applicable at all. Likewise, there is a need to apply mathematical models in numerous critical applications to measure the temperature accurately at an atomic level of the matter. Those mathematical models follow statistical rules with different distribution approaches of quantities energy of the system. However, these approaches have functional effects at microscopic and macroscopic levels of that system. Therefore, this research study represents an innovative of a wi
... Show MoreFinger vein recognition and user identification is a relatively recent biometric recognition technology with a broad variety of applications, and biometric authentication is extensively employed in the information age. As one of the most essential authentication technologies available today, finger vein recognition captures our attention owing to its high level of security, dependability, and track record of performance. Embedded convolutional neural networks are based on the early or intermediate fusing of input. In early fusion, pictures are categorized according to their location in the input space. In this study, we employ a highly optimized network and late fusion rather than early fusion to create a Fusion convolutional neural network
... Show MoreIn modern technology, the ownership of electronic data is the key to securing their privacy and identity from any trace or interference. Therefore, a new identity management system called Digital Identity Management, implemented throughout recent years, acts as a holder of the identity data to maintain the holder’s privacy and prevent identity theft. Therefore, an overwhelming number of users have two major problems, users who own data and third-party applications will handle it, and users who have no ownership of their data. Maintaining these identities will be a challenge these days. This paper proposes a system that solves the problem using blockchain technology for Digital Identity Management systems. Blockchain is a powerful techniqu
... Show MoreWith the rapid development of computers and network technologies, the security of information in the internet becomes compromise and many threats may affect the integrity of such information. Many researches are focused theirs works on providing solution to this threat. Machine learning and data mining are widely used in anomaly-detection schemes to decide whether or not a malicious activity is taking place on a network. In this paper a hierarchical classification for anomaly based intrusion detection system is proposed. Two levels of features selection and classification are used. In the first level, the global feature vector for detection the basic attacks (DoS, U2R, R2L and Probe) is selected. In the second level, four local feature vect
... Show MoreThe present study investigates deep eutectic solvents (DESs) as potential media for enzymatic hydrolysis. A series of ternary ammonium and phosphonium-based DESs were prepared at different molar ratios by mixing with aqueous glycerol (85%). The physicochemical properties including surface tension, conductivity, density, and viscosity were measured at a temperature range of 298.15 K – 363.15 K. The eutectic points were highly influenced by the variation of temperature. The eutectic point of the choline chloride: glycerol: water (ratio of 1: 2.55: 2.28) and methyltriphenylphosphonium bromide:glycerol:water (ratio of 1: 4.25: 3.75) is 213.4 K and 255.8 K, respectively. The stability of the lipase enzyme isolated from porcine pancreas (PPL) a
... Show MoreCassava, a significant crop in Africa, Asia, and South America, is a staple food for millions. However, classifying cassava species using conventional color, texture, and shape features is inefficient, as cassava leaves exhibit similarities across different types, including toxic and non-toxic varieties. This research aims to overcome the limitations of traditional classification methods by employing deep learning techniques with pre-trained AlexNet as the feature extractor to accurately classify four types of cassava: Gajah, Manggu, Kapok, and Beracun. The dataset was collected from local farms in Lamongan Indonesia. To collect images with agricultural research experts, the dataset consists of 1,400 images, and each type of cassava has
... Show MoreThe transmitting and receiving of data consume the most resources in Wireless Sensor Networks (WSNs). The energy supplied by the battery is the most important resource impacting WSN's lifespan in the sensor node. Therefore, because sensor nodes run from their limited battery, energy-saving is necessary. Data aggregation can be defined as a procedure applied for the elimination of redundant transmissions, and it provides fused information to the base stations, which in turn improves the energy effectiveness and increases the lifespan of energy-constrained WSNs. In this paper, a Perceptually Important Points Based Data Aggregation (PIP-DA) method for Wireless Sensor Networks is suggested to reduce redundant data before sending them to the
... Show More