Sensibly highlighting the hidden structures of many real-world networks has attracted growing interest and triggered a vast array of techniques on what is called nowadays community detection (CD) problem. Non-deterministic metaheuristics are proved to competitively transcending the limits of the counterpart deterministic heuristics in solving community detection problem. Despite the increasing interest, most of the existing metaheuristic based community detection (MCD) algorithms reflect one traditional language. Generally, they tend to explicitly project some features of real communities into different definitions of single or multi-objective optimization functions. The design of other operators, however, remains canonical lacking any intense interest to reflect the domain knowledge. Moreover, all the published reviews did not make any direct effort to link heuristic and metaheuristic based community detection approaches, rather, they simply state them separately. The review introduced in this paper attempts to address this issue. Mainly, we review the main heuristic and metaheuristic based community detection algorithms. Then, we introduce two new taxonomies for community detection algorithms: hybrid metaheuristic and hyper heuristic that can serve as common grounds for designing a collection of new and more effective MCD algorithms. To this end, we introduce four new systematic frameworks integrating both heuristic and metaheuristic algorithms, illustrating the possible issues that would fuel the desire for researchers to direct their future interest towards developing more effective community detection instances from the context of these frameworks.
Energy savings are very common in IoT sensor networks because IoT sensor nodes operate with their own limited battery. The data transmission in the IoT sensor nodes is very costly and consume much of the energy while the energy usage for data processing is considerably lower. There are several energy-saving strategies and principles, mainly dedicated to reducing the transmission of data. Therefore, with minimizing data transfers in IoT sensor networks, can conserve a considerable amount of energy. In this research, a Compression-Based Data Reduction (CBDR) technique was suggested which works in the level of IoT sensor nodes. The CBDR includes two stages of compression, a lossy SAX Quantization stage which reduces the dynamic range of the
... Show MoreAbstract
This research aims to analyze the reality of the production process in an assembly line Cars (RUNNA) in the public company for the automotive industry / Alexandria through the use of some Lean production tools, and data were collected through permanence in the company to identify the problems of the line in order to find appropriate to adopt some Lean production tools solutions, and results showed the presence of Lead time in some stations, which is reflected on the customer's waiting time to get the car, as well as some of the problems existing in the car produced such as high temperature of the car, as the company does not take into account customer preferences,
... Show MoreThe aim of this study is to investigate the nature of the relationship between domestic savings and domestic investment, or rather the efficiency of domestic savings in financing development in Algeria, in order to explain this relationship, identify the challenges to investment, and finance and accelerate economic growth. The economic measurement methodology has estimated the relationship between the savings rate and the local investment rate in the Algerian economy. We have annual data for the period 1970-2014. One of the most important conclusions is that there is no relationship between savings and investment, nor even an integration between them. To illustrate this, the use of some statistical tools, a
... Show MoreIn recent decades, the identification of faces with and without masks from visual data, such as video and still images, has become a captivating research subject. This is primarily due to the global spread of the Corona pandemic, which has altered the appearance of the world and necessitated the use of masks as a vital measure for epidemic prevention. Intellectual development based on artificial intelligence and computers plays a decisive role in the issue of epidemic safety, as the topic of facial recognition and identifying individuals who wear masks or not was most prominent in the introduction and in-depth education. This research proposes the creation of an advanced system capable of accurately identifying faces, both with and
... Show MoreIn this paper, previous studies about Fuzzy regression had been presented. The fuzzy regression is a generalization of the traditional regression model that formulates a fuzzy environment's relationship to independent and dependent variables. All this can be introduced by non-parametric model, as well as a semi-parametric model. Moreover, results obtained from the previous studies and their conclusions were put forward in this context. So, we suggest a novel method of estimation via new weights instead of the old weights and introduce
Paper Type: Review article.
another suggestion based on artificial neural networks.
Municipal solid waste is one of the most important environmental problems in the world and is an important source of environmental pollution and contributes significantly to the pollution of the basic environmental elements of soil, water and air. The management of municipal waste in general is a process of monitoring, collection, treatment or recycling if possible or disposal of waste. This term is used for waste produced by some human activities. States provide this process to mitigate the negative effects of waste on the environment, health and appearance of the city. It is possible to find solutions to the problem of solid waste and make it an important source of income and contribute to securing employment oppor
... Show MoreThe antiviral activity of leaf extracts from Datura stramonium and tomato plants inoculated with TMV, combined with 20% skimmed milk, was investigated. A TMV isolate was confirmed using bioassay, serological, and molecular approaches and subsequently used to inoculate plants. Tomato plants, both pre- and post-inoculated with TMV, were sprayed with leaf extracts from either TMV-free or infected plants, alone or mixed with 20% skimmed milk. Enzyme-linked immunosorbent assay (ELISA) using tobamovirus-specific antibodies and local lesion tests were conducted to assess antiviral activity based on virus concentration and infectivity in treated plants. The experiment followed a completely randomized design (CRD), and the Least Significant
... Show More