Preferred Language
Articles
/
xheYNY8BVTCNdQwCfWEW
A review of heuristics and metaheuristics for community detection in complex networks: Current usage, emerging development and future directions
...Show More Authors

Sensibly highlighting the hidden structures of many real-world networks has attracted growing interest and triggered a vast array of techniques on what is called nowadays community detection (CD) problem. Non-deterministic metaheuristics are proved to competitively transcending the limits of the counterpart deterministic heuristics in solving community detection problem. Despite the increasing interest, most of the existing metaheuristic based community detection (MCD) algorithms reflect one traditional language. Generally, they tend to explicitly project some features of real communities into different definitions of single or multi-objective optimization functions. The design of other operators, however, remains canonical lacking any intense interest to reflect the domain knowledge. Moreover, all the published reviews did not make any direct effort to link heuristic and metaheuristic based community detection approaches, rather, they simply state them separately. The review introduced in this paper attempts to address this issue. Mainly, we review the main heuristic and metaheuristic based community detection algorithms. Then, we introduce two new taxonomies for community detection algorithms: hybrid metaheuristic and hyper heuristic that can serve as common grounds for designing a collection of new and more effective MCD algorithms. To this end, we introduce four new systematic frameworks integrating both heuristic and metaheuristic algorithms, illustrating the possible issues that would fuel the desire for researchers to direct their future interest towards developing more effective community detection instances from the context of these frameworks.

Scopus Clarivate Crossref
Publication Date
Sun Dec 01 2019
Journal Name
Al-nahrain Journal Of Science
Enhancing Sparse Adjacency Matrix for Community Detection in Large Networks
...Show More Authors

View Publication
Crossref (1)
Crossref
Publication Date
Thu Jul 01 2021
Journal Name
Iraqi Journal Of Science
The Influence of NMI against Modularity in Community Detection Problem: A Case Study for Unsigned and Signed Networks
...Show More Authors

Community detection is useful for better understanding the structure of complex networks. It aids in the extraction of the required information from such networks and has a vital role in different fields that range from healthcare to regional geography, economics, human interactions, and mobility. The method for detecting the structure of communities involves the partitioning of complex networks into groups of nodes, with extensive connections within community and sparse connections with other communities. In the literature, two main measures, namely the Modularity (Q) and Normalized Mutual Information (NMI) have been used for evaluating the validation and quality of the detected community structures. Although many optimization algo

... Show More
Scopus (1)
Crossref (1)
Scopus Crossref
Publication Date
Thu Oct 31 2019
Journal Name
Journal Of Theoretical And Applied Information Technology
AN ENHANCED EVOLUTIONARY ALGORITHM WITH LOCAL HEURISTIC APPROACH FOR DETECTING COMMUNITY IN COMPLEX NETWORKS
...Show More Authors

Preview PDF
Scopus (5)
Scopus
Publication Date
Tue Jan 31 2023
Journal Name
International Journal Of Nonlinear Analysis And Applications
Survey on intrusion detection system based on analysis concept drift: Status and future directions
...Show More Authors

Nowadays, internet security is a critical concern; the One of the most difficult study issues in network security is "intrusion detection". Fight against external threats. Intrusion detection is a novel method of securing computers and data networks that are already in use. To boost the efficacy of intrusion detection systems, machine learning and deep learning are widely deployed. While work on intrusion detection systems is already underway, based on data mining and machine learning is effective, it requires to detect intrusions by training static batch classifiers regardless considering the time-varying features of a regular data stream. Real-world problems, on the other hand, rarely fit into models that have such constraints. Furthermor

... Show More
View Publication
Publication Date
Sat Dec 01 2018
Journal Name
Applied Soft Computing
A new evolutionary algorithm with locally assisted heuristic for complex detection in protein interaction networks
...Show More Authors

View Publication
Scopus (12)
Crossref (7)
Scopus Clarivate Crossref
Publication Date
Thu Feb 09 2023
Journal Name
Artificial Intelligence Review
Community detection model for dynamic networks based on hidden Markov model and evolutionary algorithm
...Show More Authors

Finding communities of connected individuals in complex networks is challenging, yet crucial for understanding different real-world societies and their interactions. Recently attention has turned to discover the dynamics of such communities. However, detecting accurate community structures that evolve over time adds additional challenges. Almost all the state-of-the-art algorithms are designed based on seemingly the same principle while treating the problem as a coupled optimization model to simultaneously identify community structures and their evolution over time. Unlike all these studies, the current work aims to individually consider this three measures, i.e. intra-community score, inter-community score, and evolution of community over

... Show More
View Publication
Scopus (8)
Crossref (5)
Scopus Clarivate Crossref
Publication Date
Wed Aug 30 2023
Journal Name
Iraqi Journal Of Science
Epidemiological Complex Networks: A Survey
...Show More Authors

     In this review paper, several research studies were surveyed to assist future researchers to identify available techniques in the field of infectious disease modeling across complex networks. Infectious disease modelling is becoming increasingly important because of the microbes and viruses that threaten people’s lives and societies in all respects. It has long been a focus of research in many domains, including mathematical biology, physics, computer science, engineering, economics, and the social sciences, to properly represent and analyze spreading processes. This survey first presents a brief overview of previous literature and some graphs and equations to clarify the modeling in complex networks, the detection of soc

... Show More
Preview PDF
Scopus (1)
Crossref (1)
Scopus Crossref
Publication Date
Wed Aug 30 2023
Journal Name
Iraqi Journal Of Science
Epidemiological Complex Networks: A Survey
...Show More Authors

     In this review paper, several research studies were surveyed to assist future researchers to identify available techniques in the field of infectious disease modeling across complex networks. Infectious disease modelling is becoming increasingly important because of the microbes and viruses that threaten people’s lives and societies in all respects. It has long been a focus of research in many domains, including mathematical biology, physics, computer science, engineering, economics, and the social sciences, to properly represent and analyze spreading processes. This survey first presents a brief overview of previous literature and some graphs and equations to clarify the modeling in complex networks, the detection of soc

... Show More
View Publication
Scopus (1)
Crossref (1)
Scopus Crossref
Publication Date
Sun Dec 01 2019
Journal Name
Applied Soft Computing
A new evolutionary multi-objective community mining algorithm for signed networks
...Show More Authors

View Publication
Scopus (8)
Crossref (5)
Scopus Clarivate Crossref
Publication Date
Tue Oct 29 2024
Journal Name
Current Drug Therapy
Current Nanotechnological Strategies for Delivery of Anti-Retroviral Drugs: Overview and Future Prospects
...Show More Authors
Abstract:

Globally, over forty million people are living with Human Immunodeficiency Viral (HIV) infections. Highly Active Antiretroviral Therapy (HAART) consists of two or three Antiretroviral (ARV) drugs and has been used for more than a decade to prolong the life of AIDS-diagnosed patients. The persistent use of HAART is essential for effectively suppressing HIV replication. Frequent use of multiple medications at relatively high dosages is a major reason for patient noncompliance and an obstacle to achieving efficient pharmacological treatment. Despite strict compliance with the HAART regimen, the eradication of HIV from the host remains unattainable. Anatomical and Intracellular viral reservo

... Show More
View Publication
Scopus (1)
Scopus Clarivate Crossref