Improved Merging Multi Convolutional Neural Networks Framework of Image Indexing and Retrieval
Disease diagnosis with computer-aided methods has been extensively studied and applied in diagnosing and monitoring of several chronic diseases. Early detection and risk assessment of breast diseases based on clinical data is helpful for doctors to make early diagnosis and monitor the disease progression. The purpose of this study is to exploit the Convolutional Neural Network (CNN) in discriminating breast MRI scans into pathological and healthy. In this study, a fully automated and efficient deep features extraction algorithm that exploits the spatial information obtained from both T2W-TSE and STIR MRI sequences to discriminate between pathological and healthy breast MRI scans. The breast MRI scans are preprocessed prior to the feature
... Show MoreThe developed financial system is essential for increasing economic growth and poverty reduction in the world. The financial development helps in poverty reduction indirectly via intermediate channel which is the economic growth. The financial development enhancing economic development through mobilization of savings and channel them to the most efficient uses with higher economic and social returns. In addition, the economic growth reduces the poverty through two channels. The first is direct by increasing the introduction factors held by poor and improve the situations into the sectors and areas where the poor live. The second is indirect through redistribution the realized incomes from the economic growth as well as the realiz
... Show MoreANN modeling is used here to predict missing monthly precipitation data in one station of the eight weather stations network in Sulaimani Governorate. Eight models were developed, one for each station as for prediction. The accuracy of prediction obtain is excellent with correlation coefficients between the predicted and the measured values of monthly precipitation ranged from (90% to 97.2%). The eight ANN models are found after many trials for each station and those with the highest correlation coefficient were selected. All the ANN models are found to have a hyperbolic tangent and identity activation functions for the hidden and output layers respectively, with learning rate of (0.4) and momentum term of (0.9), but with different data
... Show MoreThis paper proposes improving the structure of the neural controller based on the identification model for nonlinear systems. The goal of this work is to employ the structure of the Modified Elman Neural Network (MENN) model into the NARMA-L2 structure instead of Multi-Layer Perceptron (MLP) model in order to construct a new hybrid neural structure that can be used as an identifier model and a nonlinear controller for the SISO linear or nonlinear systems. Two learning algorithms are used to adjust the parameters weight of the hybrid neural structure with its serial-parallel configuration; the first one is supervised learning algorithm based Back Propagation Algorithm (BPA) and the second one is an intelligent algorithm n
... Show MoreThe objective of this study was tointroduce a recursive least squares (RLS) parameter estimatorenhanced by using a neural network (NN) to facilitate the computing of a bit error rate (BER) (error reduction) during channels estimation of a multiple input-multiple output orthogonal frequency division multiplexing (MIMO-OFDM) system over a Rayleigh multipath fading channel.Recursive least square is an efficient approach to neural network training:first, the neural network estimator learns to adapt to the channel variations then it estimates the channel frequency response. Simulation results show that the proposed method has better performance compared to the conventional methods least square (LS) and the original RLS and it is more robust a
... Show MoreSoftware Defined Networking (SDN) with centralized control provides a global view and achieves efficient network resources management. However, using centralized controllers has several limitations related to scalability and performance, especially with the exponential growth of 5G communication. This paper proposes a novel traffic scheduling algorithm to avoid congestion in the control plane. The Packet-In messages received from different 5G devices are classified into two classes: critical and non-critical 5G communication by adopting Dual-Spike Neural Networks (DSNN) classifier and implementing it on a Virtualized Network Function (VNF). Dual spikes identify each class to increase the reliability of the classification
... Show MoreNonlinear diffraction pattern can be induced by focusing CW
laser into a thin quartzes cuvette containing nanofluid. The number
of revealed pattern rings indicates to the nonlinear behavior of fluid.
Here, the nonlinear refractive index of each of functionalized single
wall carbon nanotube (F-SWCNTs) suspention and multi wall carbon
nanotube (F-MWCNTs) suspention have been investigated
experimentally .Each of CNTs suspention was at volume fraction of
13×10−5 and 6×10−5. Moreover the laser source at wavelength of
473 nm was used. The results show that SWCNTs suspention
possesses higher nonlinearty than other at the same volume fraction
We use of multi-choice Goal Programming (MCGP), which is a developed model of Goal Programming where it is used in circumstances of the multiplicity and difference of goals when choosing between decision alternatives in cases of allocating resources, as it is a model that seeks to find the closest and best solutions to the specific values of the goals within the aspiration levels, as the first goal in the multi-choice goal programming model that is used to reduce the total cost of storage and shortage, while the other goal was to reduce the difference between the real demand that the hospitals need from the blood transfusion center and the units that already achieved. The case Iraqi Center
... Show MoreThis abstract focuses on the significance of wireless body area networks (WBANs) as a cutting-edge and self-governing technology, which has garnered substantial attention from researchers. The central challenge faced by WBANs revolves around upholding quality of service (QoS) within rapidly evolving sectors like healthcare. The intricate task of managing diverse traffic types with limited resources further compounds this challenge. Particularly in medical WBANs, the prioritization of vital data is crucial to ensure prompt delivery of critical information. Given the stringent requirements of these systems, any data loss or delays are untenable, necessitating the implementation of intelligent algorithms. These algorithms play a pivota
... Show MoreIn this work, novel copolymers of poly(adipic anhydride-co-mannitol) were synthesized by melting condensation polymerization of poly(adipic anhydride) with five percentages of mannitol sugar, 1 to 5 Wt.%. These copolymers were purified and then, characterized by FT-IR, which was proved that the cross-linking reaction was caused by nucleophilic attack of mannitol hydroxyl group to acidic anhydride groups of poly(adipic anhydride) backbone and new ester groups were formed and appeared. Also, modified organic-soluble chitosan, N-maleoyl-chitosan, were synthesized by grafting reaction of chitosan with maleic anhydride in DMF as solvent, and it was also purified and characterized by FT-IR. Biodegradation in vitro of the IPNs of poly(adipic anhyd
... Show More