Preferred Language
Articles
/
xRYc0osBVTCNdQwCquCF
Machine Learning Approach for Facial Image Detection System
...Show More Authors

HM Al-Dabbas, RA Azeez, AE Ali, Iraqi Journal of Science, 2023

Scopus
View Publication
Publication Date
Tue Feb 01 2022
Journal Name
Baghdad Science Journal
An Enhanced Approach of Image Steganographic Using Discrete Shearlet Transform and Secret Sharing
...Show More Authors

Recently, the internet has made the users able to transmit the digital media in the easiest manner. In spite of this facility of the internet, this may lead to several threats that are concerned with confidentiality of transferred media contents such as media authentication and integrity verification. For these reasons, data hiding methods and cryptography are used to protect the contents of digital media. In this paper, an enhanced method of image steganography combined with visual cryptography has been proposed. A secret logo (binary image) of size (128x128) is encrypted by applying (2 out 2 share) visual cryptography on it to generate two secret share. During the embedding process, a cover red, green, and blue (RGB) image of size (512

... Show More
View Publication Preview PDF
Scopus (14)
Crossref (9)
Scopus Clarivate Crossref
Publication Date
Mon Mar 15 2010
Journal Name
Journal Of Baghdad College Of Dentistry
Ear lobes as facial landmarks for determining the occlusal plane
...Show More Authors

Background: Difficulties arise when attempting to imagine the interpupillary line and comparing it with the Fox plane guide and not more difficult than holding any instrument over the movable pupils just to demonstrate the interpupillary line. The aim of this study was to introduce ear lobes as alternative landmarks for the interpupillary line during orientation of the occlusal plane. Also, the other aim was to compare the ear lobes with the pupils of the eyes to verify that they were indifferent as anatomical landmarks. Materials & methods: The alternative landmarks, ear lobes, were presented and the method for orienting the occlusal plane with these landmarks was introduced. Digital pictures of 30 subjects, who participated in the study,

... Show More
Preview PDF
Publication Date
Sat Jun 01 2024
Journal Name
Journal Of Engineering
Copy Move Image Forgery Detection using Multi-Level Local Binary Pattern Algorithm
...Show More Authors

Digital image manipulation has become increasingly prevalent due to the widespread availability of sophisticated image editing tools. In copy-move forgery, a portion of an image is copied and pasted into another area within the same image. The proposed methodology begins with extracting the image's Local Binary Pattern (LBP) algorithm features. Two main statistical functions, Stander Deviation (STD) and Angler Second Moment (ASM), are computed for each LBP feature, capturing additional statistical information about the local textures. Next, a multi-level LBP feature selection is applied to select the most relevant features. This process involves performing LBP computation at multiple scales or levels, capturing textures at different

... Show More
Crossref
Publication Date
Sun Feb 03 2019
Journal Name
Iraqi Journal Of Physics
Change detection of remotely sensed image using NDVI subtractive and classification methods.
...Show More Authors

Change detection is a technology ascertaining the changes of
specific features within a certain time Interval. The use of remotely
sensed image to detect changes in land use and land cover is widely
preferred over other conventional survey techniques because this
method is very efficient for assessing the change or degrading trends
of a region. In this research two remotely sensed image of Baghdad
city gathered by landsat -7and landsat -8 ETM+ for two time period
2000 and 2014 have been used to detect the most important changes.
Registration and rectification the two original images are the first
preprocessing steps was applied in this paper. Change detection using
NDVI subtractive has been computed, subtrac

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Wed Sep 11 2019
Journal Name
Journal Of Mechanical Engineering Research And Developments
INDUSTRIAL TRACKING CAMERA AND PRODUCT VISION DETECTION SYSTEM
...Show More Authors

View Publication
Scopus (7)
Crossref (3)
Scopus Crossref
Publication Date
Wed Jan 01 2020
Journal Name
Ieee Access
Smart Routing Management Framework Exploiting Dynamic Data Resources of Cross-Layer Design and Machine Learning Approaches for Mobile Cognitive Radio Networks: A Survey
...Show More Authors

View Publication
Scopus (20)
Crossref (20)
Scopus Clarivate Crossref
Publication Date
Fri Nov 21 2025
Journal Name
Journal Of Advances In Information Technology
Towards Accurate SDG Research Categorization: A Hybrid Deep Learning Approach Using Scopus Metadata
...Show More Authors

The complexity and variety of language included in policy and academic documents make the automatic classification of research papers based on the United Nations Sustainable Development Goals (SDGs) somewhat difficult. Using both pre-trained and contextual word embeddings to increase semantic understanding, this study presents a complete deep learning pipeline combining Bidirectional Long Short-Term Memory (BiLSTM) and Convolutional Neural Network (CNN) architectures which aims primarily to improve the comprehensibility and accuracy of SDG text classification, thereby enabling more effective policy monitoring and research evaluation. Successful document representation via Global Vector (GloVe), Bidirectional Encoder Representations from Tra

... Show More
View Publication Preview PDF
Crossref
Publication Date
Tue Mar 01 2011
Journal Name
Journal Of Economics And Administrative Sciences
Developing and Sustaining a Multilevel Competitive Learning Organization – A Behavioral and Cognitive Approach
...Show More Authors

To maintain a sustained competitive position in the contemporary environment of  knowledge  economy,  organizations  as an open social systems must have an ability to learn and know  how to adapt to rapid changes  in a proper fashion so that organizational objectives will be achieved efficiently and effectively.  A multilevel approach is adopted proposing that organizational learning suffers from the lack of interest about the strategic competitive performance of the organization. This remains implicit almost in all models of organizational learning and there is little focus on how learning organizations achieve sustainable competitive advantage . A dynamic model that captures t

... Show More
View Publication Preview PDF
Crossref
Publication Date
Tue Aug 10 2021
Journal Name
Design Engineering
Lossy Image Compression Using Hybrid Deep Learning Autoencoder Based On kmean Clusteri
...Show More Authors

Image compression plays an important role in reducing the size and storage of data while increasing the speed of its transmission through the Internet significantly. Image compression is an important research topic for several decades and recently, with the great successes achieved by deep learning in many areas of image processing, especially image compression, and its use is increasing Gradually in the field of image compression. The deep learning neural network has also achieved great success in the field of processing and compressing various images of different sizes. In this paper, we present a structure for image compression based on the use of a Convolutional AutoEncoder (CAE) for deep learning, inspired by the diversity of human eye

... Show More
Publication Date
Sat Jun 06 2020
Journal Name
Journal Of The College Of Education For Women
Image classification with Deep Convolutional Neural Network Using Tensorflow and Transfer of Learning
...Show More Authors

The deep learning algorithm has recently achieved a lot of success, especially in the field of computer vision. This research aims to describe the classification method applied to the dataset of multiple types of images (Synthetic Aperture Radar (SAR) images and non-SAR images). In such a classification, transfer learning was used followed by fine-tuning methods. Besides, pre-trained architectures were used on the known image database ImageNet. The model VGG16 was indeed used as a feature extractor and a new classifier was trained based on extracted features.The input data mainly focused on the dataset consist of five classes including the SAR images class (houses) and the non-SAR images classes (Cats, Dogs, Horses, and Humans). The Conv

... Show More
View Publication Preview PDF
Crossref (1)
Crossref