The effect of D phase polyamide (PA6)on the rheological properties, Young Modulus and the thermal expansion coefficient of two blends groups (bitumen-polyamide) were tested. The first group was for bitumen-PA6 blends and the second group for bitumen blended with polymer resulted from the crystallization of PA6-formic acid solution in water(PAFW).The obtained results proved that adding both types of polyamide has led to a rise in toughness and softening point temperature while the penetration Index approached -3 after adding the polyamide. So, all these changes make bitumen-polyamide blends more suitable for use in hot climate regions. The blends properties were explained according to the reaction that takes place between the polyamide and the epoxy present in the bitumen at temperatures exceeding 200 ° C. However, these changes were more pronounced for mixtures that contained PAFW due to their porous morphological structure, which increased the reaction and made the blends more miscibility even when the addition ratio reached to4%. In the case of PA6, when its ratio in bitumen increased by more than 1%, the unreacted portion of this polymer with epoxy would be mere filler in the mixtures and it did not appear to have a pronounced effect on the properties of bitumen.
Background: The most widely used material for fabrication of denture base is poly methyl methacrylate, despite its popularity, the main problems associated with it as a denture base material are poor strength particularly under fatigue failure inside the patient mouth, impact failure outside the patient mouth, which are the main causes for fracture of denture, several studies was done to increase mechanical properties of denture base. The present study was conducted to evaluate and compare the effect of addition single walled carbon nanotubes in different concentrations to polymethyl methacrylate on some mechanical properties (surface hardness, surface roughness, impact strength and transverse strength). Materials and methods: Forty eight
... Show MoreThis research studies the development and synthesis of blended nanocomposites filled with Titanium dioxide (TiO2). Blended nanocomposites based on unsaturated polyester resin (UPR) and epoxy resins were synthesized by reactive blending. The optimum quantity from nano partical of titanium dioxide was selected and different weight proportions 1%, 3%, 5%, and 7% ratios of new epoxy are blended with UPR resin. The dielectric breakdown strength and thermal conductivity properties of the blended nanocomposites were compared with those of the basis material (UPR and 3% TiO2).The results show good compatibility epoxy resins with the UPR resin on blending, dielectric breakdown strength values are higher while thermal conductivity values of
... Show MoreThis research studies the development and synthesis of blended nanocomposites filled with Titanium dioxide (TiO2). Blended nanocomposites based on unsaturated polyester resin (UPR) and epoxy resins were synthesized by reactive blending. The optimum quantity from nano partical of titanium dioxide was selected and different weight proportions 1%, 3%, 5%, and 7% ratios of new epoxy are blended with UPR resin. The dielectric breakdown strength and thermal conductivity properties of the blended nanocomposites were compared with those of the basis material (UPR and 3% TiO2).The results show good compatibility epoxy resins with the UPR resin on blending, dielectric breakdown strength values are higher while thermal conductivity values of
... Show MoreBackground: The final stage of endodontic therapy is complete obturation of the root canal system to provide as perfect as possible at the cementodentinal junction of the apical foramen. The purpose of this in vitro study was to evaluate the sealing ability of injection molded thermoplasticized gutta percha and lateral condensation techniques with and without the use of sealers. Materials and Methods: Forty freshly extracted adult human maxillary central incisors with complete formed apices were utilized in this study. The teeth were randomly divided into four groups for evaluation of the apical seal. Group (1) lateral condensation gutta percha technique without sealer, (2) lateral condensation gutta percha technique with sealer, (3) Inject
... Show MoreObjective:Fluorid-containing dental alginate impression materials can exert a considerable reduction in
enamel solubility. The objective was to evaluate the effect of fluoride addition on the setting time and
compressive strength of alginate impression materials.
Methodology: 60 samples were constructed from alginate impression material (30 samples for setting
time test and 30 samples for compressive strength test).Specimens of each test divided into three
subgroup. Group A: 10 specimens of alginate were mixed with distilled water [control], Group B: 10
specimens of alginate were mixed with100-ppm fluoride and Group C:10 specimens of alginate were
mixed with 2%Naf.
Results: the result of setting time test showed t
In the present study, composites were prepared by Hand lay-up molding and investigated. The composites constituents were epoxy resin as the matrix, 6% volume fractions of Glass Fibers (G.F) as reinforcement and 3%, 6% of industrial powder (Calcium Carbonate CaCO3, Potassium Carbonate K2CO3 and Sodium Carbonate Na2CO3) as filler. Density, water absorption, hardness test, flexural strength, shear stress measurements and tests were conducted to reveal their values for each type of composite material. The results showed that the non – reinforced epoxy have lower properties than composites material. Measured density results had show an incremental increase with volume fraction increase
... Show MoreThe influence of pre- shot peening and welding parameters on mechanical and metallurgical properties of dissimilar and similar aluminum alloys AA2024-T3 and AA6061-T6 joints using friction stir welding have been studied. In this work, numbers of plates were equipped from sheet alloys in dimensions (150*50*6) mm then some of them were exposed to shot peening process before friction stir welding using steel ball having diameter 1.25 mm for period of 15 minutes. FSW joints were manufactured from plates at three welding speeds (28, 40, 56 mm/min) and welding speed 40mm/min was chosen at a rotating speed of 1400 rpm for welding the dissimilar pre- shot plates. Tow joints were made at rotational speed of 1000 rpm and welding speed of 40m/min f
... Show MoreIn this study, thermal characteristics of a two-phase closed heat pipe were investigated experimentally and theoretically. A two-phase closed heat pipe (copper container, Fluorocarbon FC-72 (C6F14) working fluid) was fabricated to examine its performance under the effect of input heat flux range of 250–1253 W/m2 , 70% fill charge ratio and various tilt angles. The temperature distribution along the heat pipe, input heat to evaporator section, and output heat from condenser were monitored. A comprehensive mathematical model was developed to investigate the steadystate heat transfer performance of a two-phase closed heat pipe. A steady state analytical model, is presented to determine important parameters on the design of two-phase close
... Show MoreThe aim of present work is to improve mechanical and fatigue properties for Aluminum alloy7049 by using Nano composites technique. The ZrO2 with an average grain diameter of 30-40 nm, was selected as Nano particles, to reinforce Aluminum alloy7049 with different percentage as, 2, 4, 6 and 7 %. The Stir casting method was used to fabricate the Nano composites materials due to economical route for improvement and processing of metal matrix composites. The experimental results were shown that the adding of zirconium oxide (ZrO2) as reinforced material leads to improve mechanical properties. The best percentage of improvement of mechanical properties of 7049 AA was with 4% wt. of ZrO2 about (7.76% ) for ultim
... Show MoreThe aim of this work is to enhance the mechanical properties of the glass ionomer cement GIC (dental materials) by adding Zirconium Oxide ZrO2 in both micro and nano particles. GIC were mixed with (3, 5 and 7) wt% of both ZrO2 micro and nanoparticles separately. Compressive strength (CS), biaxial flexural strength (BFS), Vickers Microhardness (VH) and wear rate losses (WR) were investigated. The maximum compression strength was 122.31 MPa with 5 wt. % ZrO2 micro particle, while 3wt% nanoparticles give highest Microhardness and biaxial flexural strength of 88.8 VHN and 35.79 MPa respectively. The minimum wear rate losses were 3.776µg/m with 7 wt. % ZrO2 nanoparticle. GIC-contai
... Show More