Modern civilization increasingly relies on sustainable and eco-friendly data centers as the core hubs of intelligent computing. However, these data centers, while vital, also face heightened vulnerability to hacking due to their role as the convergence points of numerous network connection nodes. Recognizing and addressing this vulnerability, particularly within the confines of green data centers, is a pressing concern. This paper proposes a novel approach to mitigate this threat by leveraging swarm intelligence techniques to detect prospective and hidden compromised devices within the data center environment. The core objective is to ensure sustainable intelligent computing through a colony strategy. The research primarily focusses on the applying sigmoid fish swarm optimization (SiFSO) for early compromised device detection and subsequently alerting other network nodes. Additionally, our data center implements an innovative ant skyscape architecture (ASA) cooling mechanism, departing from traditional, unsustainable cooling strategies that harm the environment. To validate the effectiveness of these approaches, extensive simulations were conducted. The evaluations primarily revolved around the fish colony’s ability to detect compromised devices, focusing on source tracing, realistic modelling, and an impressive 98% detection accuracy rate under ASA cooling solution with 0.16 ºC within 1,300 second. Compromised devices pose a substantial risk to green data centers, as attackers could manipulate and disrupt network equipment. Therefore, incorporating cyber enhancements into the green data center concept is imperative to foster more adaptable and efficient smart networks.
This research includes the study of dual data models with mixed random parameters, which contain two types of parameters, the first is random and the other is fixed. For the random parameter, it is obtained as a result of differences in the marginal tendencies of the cross sections, and for the fixed parameter, it is obtained as a result of differences in fixed limits, and random errors for each section. Accidental bearing the characteristic of heterogeneity of variance in addition to the presence of serial correlation of the first degree, and the main objective in this research is the use of efficient methods commensurate with the paired data in the case of small samples, and to achieve this goal, the feasible general least squa
... Show MoreThe regression analysis process is used to study and predicate the surface response by using the design of experiment (DOE) as well as roughness calculation through developing a mathematical model. In this study; response surface methodology and the particular solution technique are used. Design of experiment used a series of the structured statistical analytic approach to investigate the relationship between some parameters and their responses. Surface roughness is one of the important parameters which play an important role. Also, its found that the cutting speed can result in small effects on surface roughness. This work is focusing on all considerations to make interaction between the parameters (position of influenc
... Show MoreThe Atmospheric Infrared Sounder (AIRS) on EOS/Aqua satellite provides diverse measurements of Methane (CH4) distribution at different pressure levels in the Earth's atmosphere. The focus of this research is to analyze the vertical variations of (CH4) volume mixing ratio (VMR) time-series data at four Standard pressure levels SPL (925, 850, 600, and 300 hPa) in the troposphere above six cities in Iraq from January 2003 to September 2016. The analysis results of monthly average CH4VMR time-series data show a significant increase between 2003 and 2016, especially from 2009 to 2016; the minimum values of CH4 were in 2003 while the maximum values were in 2016. The vertical distribution of CH4<
... Show MoreThis research aims to study the methods of reduction of dimensions that overcome the problem curse of dimensionality when traditional methods fail to provide a good estimation of the parameters So this problem must be dealt with directly . Two methods were used to solve the problem of high dimensional data, The first method is the non-classical method Slice inverse regression ( SIR ) method and the proposed weight standard Sir (WSIR) method and principal components (PCA) which is the general method used in reducing dimensions, (SIR ) and (PCA) is based on the work of linear combinations of a subset of the original explanatory variables, which may suffer from the problem of heterogeneity and the problem of linear
... Show MoreBackground: Generally, genetic disorders are a leading cause of spontaneous abortion, neonatal death, increased morbidity and mortality in children and adults as well. They a significant health care and psychosocial burden for the patient, the family, the healthcare system and the community as a whole. Chromosomal abnormalities occur much more frequently than is generally appreciated. It is estimated that approximately 1 of 200 newborn infants had some form of chromosomal abnormality. The figure is much higher in fetuses that do not survive to term. It is estimated that in 50% of first trimester abortions, the fetus has a chromosomal abnormality. Aim of the study: This study aims to shed some light on the results of chromosomal studies per
... Show MoreAbstract. Hassan FM, Mahdi WM, Al-Haideri HH, Kamil DW. 2022. Identification of new species record of Cyanophyceae in Diyala River, Iraq based on 16S rRNA sequence data. Biodiversitas 23: 5239-5246. The biodiversity and water quality of the Diyala River require screening water in terms of biological contamination, because it is the only water source in Diyala City and is used for many purposes. This study aimed to identify a new species record of Cynaophyceae and emphasize the importance of using molecular methods beside classic morphological approaches, particularly in the water-shrinkage-aqua system. Five different sites along Diyala River were selected for Cyanophyceae identification. Morphological examination and 16S rRNA sequen
... Show MoreThe stress(Y) – strength(X) model reliability Bayesian estimation which defines life of a component with strength X and stress Y (the component fails if and only if at any time the applied stress is greater than its strength) has been studied, then the reliability; R=P(Y<X), can be considered as a measure of the component performance. In this paper, a Bayesian analysis has been considered for R when the two variables X and Y are independent Weibull random variables with common parameter α in order to study the effect of each of the two different scale parameters β and λ; respectively, using three different [weighted, quadratic and entropy] loss functions under two different prior functions [Gamma and extension of Jeffery
... Show More