Modern civilization increasingly relies on sustainable and eco-friendly data centers as the core hubs of intelligent computing. However, these data centers, while vital, also face heightened vulnerability to hacking due to their role as the convergence points of numerous network connection nodes. Recognizing and addressing this vulnerability, particularly within the confines of green data centers, is a pressing concern. This paper proposes a novel approach to mitigate this threat by leveraging swarm intelligence techniques to detect prospective and hidden compromised devices within the data center environment. The core objective is to ensure sustainable intelligent computing through a colony strategy. The research primarily focusses on the applying sigmoid fish swarm optimization (SiFSO) for early compromised device detection and subsequently alerting other network nodes. Additionally, our data center implements an innovative ant skyscape architecture (ASA) cooling mechanism, departing from traditional, unsustainable cooling strategies that harm the environment. To validate the effectiveness of these approaches, extensive simulations were conducted. The evaluations primarily revolved around the fish colony’s ability to detect compromised devices, focusing on source tracing, realistic modelling, and an impressive 98% detection accuracy rate under ASA cooling solution with 0.16 ºC within 1,300 second. Compromised devices pose a substantial risk to green data centers, as attackers could manipulate and disrupt network equipment. Therefore, incorporating cyber enhancements into the green data center concept is imperative to foster more adaptable and efficient smart networks.
In this research، a comparison has been made between the robust estimators of (M) for the Cubic Smoothing Splines technique، to avoid the problem of abnormality in data or contamination of error، and the traditional estimation method of Cubic Smoothing Splines technique by using two criteria of differentiation which are (MADE، WASE) for different sample sizes and disparity levels to estimate the chronologically different coefficients functions for the balanced longitudinal data which are characterized by observations obtained through (n) from the independent subjects، each one of them is measured repeatedly by group of specific time points (m)،since the frequent measurements within the subjects are almost connected an
... Show MoreThis research had been achieved to identify the image of the subsurface structure representing the Tertiary period in the Galabat Field northeast of Iraq using 2D seismic survey measurements. Synthetic seismograms of the Galabat-3 well were generated in order to identify and pick the reflectors in seismic sections. Structural Images were drawn in the time domain and then converted to the depth domain by using average velocities. Structurally, seismic sections illustrate these reflectors are affected by two reverse faults affected on the Jeribe Formation and the layers below with the increase in the density of the reverse faults in the northern division. The structural maps show Galabat field, which consists of longitudinal Asymmetrical narr
... Show MoreMultilocus haplotype analysis of candidate variants with genome wide association studies (GWAS) data may provide evidence of association with disease, even when the individual loci themselves do not. Unfortunately, when a large number of candidate variants are investigated, identifying risk haplotypes can be very difficult. To meet the challenge, a number of approaches have been put forward in recent years. However, most of them are not directly linked to the disease-penetrances of haplotypes and thus may not be efficient. To fill this gap, we propose a mixture model-based approach for detecting risk haplotypes. Under the mixture model, haplotypes are clustered directly according to their estimated d
تمهيد
غالبا ما يكون تعامل المنظمات المالية والمصرفية مع الزبائن بشكل أساسي مما يتطلب منها جمع كميات هائلة من البيانات عن هؤلاء الزبائن هذا بالإضافة الى ما يرد اليها يوميا من بيانات يجعلها أمام أكداس كبيرة من البيانات تحتاج الى جهود جبارة تحسن التعامل معها والاستفادة منها بما يخدم المنظمة.
ان التعامل اليدوي مع مثل هذه البيانات دون استخدام تقنيات حديثة يبعد المنظمة عن التط
... Show MoreMersing is one of the places that have the potential for wind power development in Malaysia. Researchers often suggest it as an ideal place for generating electricity from wind power. However, before a location is chosen, several factors need to be considered. By analyzing the location ahead of time, resource waste can be avoided and maximum profitability to various parties can be realized. For this study, the focus is to identify the distribution of the wind speed of Mersing and to determine the optimal average of wind speed. This study is critical because the wind speed data for any region has its distribution. It changes daily and by season. Moreover, no determination has been made regarding selecting the average wind speed used for w
... Show Moren this research, several estimators concerning the estimation are introduced. These estimators are closely related to the hazard function by using one of the nonparametric methods namely the kernel function for censored data type with varying bandwidth and kernel boundary. Two types of bandwidth are used: local bandwidth and global bandwidth. Moreover, four types of boundary kernel are used namely: Rectangle, Epanechnikov, Biquadratic and Triquadratic and the proposed function was employed with all kernel functions. Two different simulation techniques are also used for two experiments to compare these estimators. In most of the cases, the results have proved that the local bandwidth is the best for all the types of the kernel boundary func
... Show MoreThe region-based association analysis has been proposed to capture the collective behavior of sets of variants by testing the association of each set instead of individual variants with the disease. Such an analysis typically involves a list of unphased multiple-locus genotypes with potentially sparse frequencies in cases and controls. To tackle the problem of the sparse distribution, a two-stage approach was proposed in literature: In the first stage, haplotypes are computationally inferred from genotypes, followed by a haplotype coclassification. In the second stage, the association analysis is performed on the inferred haplotype groups. If a haplotype is unevenly distributed between the case and control samples, this haplotype is labeled
... Show More