Increasing demands on producing environmentally friendly products are becoming a driving force for designing highly active catalysts. Thus, surfaces that efficiently catalyse the nitrogen reduction reactions are greatly sought in moderating air-pollutant emissions. This contribution aims to computationally investigate the hydrodenitrogenation (HDN) networks of pyridine over the γ-Mo2N(111) surface using a density functional theory (DFT) approach. Various adsorption configurations have been considered for the molecularly adsorbed pyridine. Findings indicate that pyridine can be adsorbed via side-on and end-on modes in six geometries in which one adsorption site is revealed to have the lowest adsorption energy (–45.3 kcal/mol). Over a nitrogen hollow site adsorption site, initial HDN steps proceed by the stepwise hydrogenation of pyridine into piperidine followed by the Langmuir–Hinshelwood mechanism. The obtained findings are the first to theoretically model the hydrogenation pathways of pyridine to form piperidine and then the hydrogenolysis of piperidine producing C5H12 and NH3 over metal nitride. These paved the way for further investigations to better understanding such an important nitrogen removal reactions.
In this research project, a tip-tilting angle of a photovoltaic solar cell was developed to increase generated electrical power output. An active, accurate, and simple dual-axis tracking system was designed by using an Arduino Uno microprocessor. The system consisted of two sections: software and apparatus (hardware). It was modified by using a group of light-dependent resistor sensors, and two DC servo motors were utilized to rotate the solar panel to a location with maximum sunlight. These components were arranged in a mechanical configuration with the gearbox. The three locations of the solar cell were chosen according to the tilt angle values, at zero angles, which included an optimal 33-degree angle for the Baghdad location and
... Show MoreMetoclopramide HCl (MTB) is a potent antiemetic drug used for the treatment of nausea and vomiting. Many trials were made to prepare a satisfactory MTB orodispersible tablet using direct compression method.Various super disintegrants were used in this study which are croscarmellose sodium (CCS), sodium starch glycolate (SSG) and crospovidone (CP). The latter was the best in terms of showing the fastest disintegration time in the mouth.Among the different diluents utilized, it was found that a combination of microcrystalline cellulose PH101 (MCC 101), mannitol, dicalcium phosphate dihydrate (DPD) and Glycine was the best in preparing MTB orodispersible tablet with fastest disintegration time in the mouth.The physical parameters of the pre
... Show MoreThis paper presents a study for the influence of magnetohydrodynamic (MHD) on the oscillating flows of fractional Burgers’ fluid. The fractional calculus approach in the constitutive relationship model is introduced and a fractional Burgers’ model is built. The exact solution of the oscillating motions of a fractional Burgers’ fluid due to cosine and sine oscillations of an infinite flat plate are established with the help of integral transforms (Fourier sine and Laplace transforms). The expressions for the velocity field and the resulting shear stress that have been obtained, presented under integral and series form in terms of the generalized Mittag-Leffler function, satisfy all imposed initial and boundary conditions. Finall
... Show MoreThis work presents a simple method for determination of the neutron reflection coefficient (n) as a function of different neutron reflector materials.A laboratory neutron source (Am-Be) with activity of 16 ci is employed with a (BF3) neutron detector. Am-BeThree types of reflector materials are used as samples, the thickness of each sample is (5cm).It is found that( ?7) is: -For polyethlyene = 0.818
Vitamins play an important role in the human health, and thus they are the kind of major nutrients in the body. Chemical products perform numerous physiological functions and can jeopardize health jointly in their absence and surplus. Therefore, it is necessary to establish methods for observation vitamin levels in various molds. In this review paper, the most methods of determination used are high performance liquid chromatography (HPLC), spectrophotometric and potentiometric techniques by listed the value of : slope, linear range, correlation coefficient, detection limit, the max of wavelength and PH and compared with these methods.
Reverse shoulder arthroplasty is an increasingly common surgical intervention. However there are concerns and known limitations in relation to such joint replacement, while novel designs of reverse shoulder prostheses continue to appear on the market. Many claim to offer improvements over older designs but such assertions are difficult to validate when there is no consensus as to how such implants should be tested in vitro or even if such testing is necessary. In order to permit appropriate in vitro testing of reverse shoulder prostheses a unique, multi-station test rig was designed which was capable of applying motion in three axes to test prostheses. The shoulder simulator can apply up to 110° of motion in the flexion–extension and abd
... Show MoreThe aim: to evaluate combined microscopy techniques for determining the morphological and optical properties of methadone hydrochloride (MDN) crystals. Materials and methods: MDN crystal formation was optimized using a closed container method and crystals were characterized using polarized light microscope (PLM), scanning electron microscopy (SEM) and confocal microscopy (CM). SEM and CM were used to determine MDN crystal thickness and study its relationship with crystal retardation colours using the Michel-Levy Birefringence approach. Results: Dimensions (mean±SD) of diamond shaped MDN crystals were confirmed using SEM and CM. Crystals were 46.4±15.2 Vs 32.0±8.3 µm long, 28.03±8.2 Vs 20.85±5.5 µm wide, and 6.62±
... Show MoreThis work includes a detailed description of the Leucostoma nigricorpuris sp. nov. from
Iraq. Locality, host plants and data of collection were given.
The determination of aerodynamic coefficients by shell designers is a critical step in the development of any projectile design. Of particular interest is the determination of the aerodynamic coefficients at transonic speeds. It is in this speed regime that the critical aerodynamic behavior occurs and a rapid change in the aerodynamic coefficients is observed. Two-dimensional, transonic, flow field computations over projectiles have been made using Euler equations which were used for solution with no special treatment required. In this work a solution algorithm is based on finite difference MacCormack’s technique for solving mixed subsonic-supersonic flow problem. Details of the asymmetrically located shock waves on the projectiles hav
... Show More