Global solar radiation prediction over North Dakota using air temperature: Development of novel hybrid intelligence model
...Show More Authors
In this work , a hybrid scheme tor Arabic speech for the recognition
of the speaker verification is presented . The scheme is hybrid as utilizes the traditional digi tal signal processi ng and neural network . Kohonen neural network has been used as a recognizer tor speaker verification after extract spectral features from an acoustic signal by Fast Fourier Transformation Algorithm(FFT) .
The system was im plemented using a PENTIUM processor , I000
MHZ compatible and MS-dos 6.2 .
The impact of COVID-19 pandemic on education models was mainly through the expansion of technology use in the different educational programs. Earlier impact of COVID-19 was manifested in the complete and sudden transition to distance education regardless of institution preparedness status. Gradually, many institutions are moving back to on-campus face-to-face education. However, others including all higher education institutions in Iraq are adopting the hybrid education model. This report presents part of the end of semester evaluation survey conducted at the University of Baghdad College of Pharmacy for the Spring 2021 semester. The survey aims to address points of strength and weakness associated with the hybrid education model and spe
... Show MoreAbstract Candida albicans is a commensal fungal pathogen that grows in yeast and hyphal forms in the human gut. C. albicans causes mucosal and cutaneous diseases that can result in significant mortality following systematic infections and it also exhibits drug resistance. Zebrafish have been an excellent model to investigate C. albicans infections because of their transparency and the availability of many transgenic lines. However, there is a limitation in using zebrafish as a model because the fish embryos cannot survive at 37°C therefore it is not suitable for studying Candida infections at physiological relevant human body temperature. In this thesis, the normal embryonic development of Arabian killifish (A. dispar) is investigated, rev
... Show MoreThis paper presents a hybrid approach for solving null values problem; it hybridizes rough set theory with intelligent swarm algorithm. The proposed approach is a supervised learning model. A large set of complete data called learning data is used to find the decision rule sets that then have been used in solving the incomplete data problem. The intelligent swarm algorithm is used for feature selection which represents bees algorithm as heuristic search algorithm combined with rough set theory as evaluation function. Also another feature selection algorithm called ID3 is presented, it works as statistical algorithm instead of intelligent algorithm. A comparison between those two approaches is made in their performance for null values estima
... Show MoreThis study aims to demonstrate the role of artificial intelligence and metaverse techniques, mainly logistical Regression, in reducing earnings management in Iraqi private banks. Synthetic intelligence approaches have shown the capability to detect irregularities in financial statements and mitigate the practice of earnings management. In contrast, many privately owned banks in Iraq historically relied on manual processes involving pen and paper for recording and posting financial information in their accounting records. However, the banking sector in Iraq has undergone technological advancements, leading to the Automation of most banking operations. Conventional audit techniques have become outdated due to factors such as the accuracy of d
... Show MoreObjectives: Small field of view gamma detection and imaging technologies for monitoring in vivo tracer uptake are rapidly expanding and being introduced for bed-side imaging and image guided surgical procedures. The Hybrid Gamma Camera (HGC) has been developed to enhance the localization of targeted radiopharmaceuticals during surgical procedures; for example in sentinel lymph node (SLN) biopsies and for bed-side imaging in procedures such as lacrimal drainage imaging and thyroid scanning. In this study, a prototype anthropomorphic head and neck phantom has been designed, constructed, and evaluated using representative modelled medical scenarios to study the capability of the HGC to detect SLNs and image small organs. Methods: An anthropom
... Show MoreBackground: Glass ionomer restorations are widely employed in the field of pediatric dentistry. There is a constant demand for a durable restoration that remains functional until exfoliation. This study aimed to measure and compare the effect of a novel coating material (EQUIA Forte Coat) on the microleakage of glass hybrid restoration (EQUIA Forte HT) in primary teeth. Material and method: Thirty cavitated (class-II) primary molars were allocated randomly into two groups based on the coat application; uncoated (control) and coated group (experimental). Cavities were prepared by the use of a ceramic bur (CeraBur) and restored with EQUIA Forte HT with or without applying a protective coat (EQUIA Forte Coat). Samples went through the therm
... Show MoreBackground: Glass ionomer restorations are widely employed in the field of pediatric dentistry. There is a constant demand for a durable restoration that remains functional until exfoliation. This study aimed to measure and compare the effect of a novel coating material (EQUIA Forte Coat) on the microleakage of glass hybrid restoration (EQUIA Forte HT) in primary teeth. Material and method: Thirty cavitated (class-II) primary molars were allocated randomly into two groups based on the coat application; uncoated (control) and coated group (experimental). Cavities were prepared by the use of a ceramic bur (CeraBur) and restored with EQUIA Forte HT with or without applying a protective coat (EQUIA Forte Coat). Samples went through the
... Show MoreCOVID 19 has spread rapidly around the world due to the lack of a suitable vaccine; therefore the early prediction of those infected with this virus is extremely important attempting to control it by quarantining the infected people and giving them possible medical attention to limit its spread. This work suggests a model for predicting the COVID 19 virus using feature selection techniques. The proposed model consists of three stages which include the preprocessing stage, the features selection stage, and the classification stage. This work uses a data set consists of 8571 records, with forty features for patients from different countries. Two feature selection techniques are used in