Solid‐waste management, particularly of aluminum (Al), is a challenge that is being confronted around the world. Therefore, it is valuable to explore methods that can minimize the exploitation of natural assets, such as recycling. In this study, using hazardous Al waste as the main electrodes in the electrocoagulation (EC) process for dye removal from wastewater was discussed. The EC process is considered to be one of the most efficient, promising, and cost‐effective ways of handling various toxic effluents. The effect of current density (10, 20, and 30 mA/cm2), electrolyte concentration (1 and 2 g/L), and initial concentration of Brilliant Blue dye (15 and 30 mg/L) on the efficiency of the EC process were examined in this study. The results show that removal efficiency increased with current density and sodium chloride (NaCl) concentration and decreased with initial dye concentration. The electrical power and electrodes consumed increased with an increase in current density and decreased notably with increased NaCl. The optimum current density and amount of NaCl were 20 mA/cm2 and 2 g/L, respectively to attain highest values of E133 brilliant blue dye removal. The EC process was examined using adsorption isotherms and kinetics models. Those results showed that the Langmuir isotherm matched the experimental data. Furthermore, the experimental data were followed the Elovich model kinetics.
Various theories have been proposed since in last century to predict the first sighting of a new crescent moon. None of them uses the concept of machine and deep learning to process, interpret and simulate patterns hidden in databases. Many of these theories use interpolation and extrapolation techniques to identify sighting regions through such data. In this study, a pattern recognizer artificial neural network was trained to distinguish between visibility regions. Essential parameters of crescent moon sighting were collected from moon sight datasets and used to build an intelligent system of pattern recognition to predict the crescent sight conditions. The proposed ANN learned the datasets with an accuracy of more than 72% in comp
... Show MoreThis paper studies the combination of fluid viscous dampers in the outrigger system to add supplementary damping into the structure, which purpose to remove the dependability of the structure to lower variable intrinsic damping. This optimizes the accuracy of the dynamic response and by providing higher level of damping, basically minimizes the wanted stiffness of the structure while at the same time optimizing the achievement.
The modal considered is a 36 storey square high rise reinforced concrete building. By constructing a discrete lumped mass model and using frequency-based response function, two systems of dampers, parallel and series systems are studied. The maximu
... Show MoreThe prostheses sockets use normally composite materials which means that their applications may be related with the human body. Therefore, it was very necessary to improve the mechanical properties of these materials. The prosthetic sockets are subjected to varying stresses in gait cycle scenario which may cause a fatigue damage. Therefore, it is necessary or this work to modify the fatigue behavior of the materials used for manufacturing the prostheses sockets. In this work, different Nano particle materials are used to modify the mechanical properties of the composite materials, and increase the fatigue strength. By using an experimental technique, the effect of using different volu
This paper presents a novel inverse kinematics solution for robotic arm based on artificial neural network (ANN) architecture. The motion of robotic arm is controlled by the kinematics of ANN. A new artificial neural network approach for inverse kinematics is proposed. The novelty of the proposed ANN is the inclusion of the feedback of current joint angles configuration of robotic arm as well as the desired position and orientation in the input pattern of neural network, while the traditional ANN has only the desired position and orientation of the end effector in the input pattern of neural network. In this paper, a six DOF Denso robotic arm with a gripper is controlled by ANN. The comprehensive experimental results proved the appl
... Show MoreIncreased diseases and obesity currently due to increased production and excessive consumption of foods manufactured from non-food sweeteners without attention to the risk of consuming those additional high calories due to consuming these refreshing products such as juices and other various drinks, especially in the summer season by most segments of Iraqi society, especially workers, children and school students the aim of this study. Therefore, the study designed to replace sucrose with 0.03, 0.04 and 0.05% of each of the white stevia crystals and milled dry stevia leaves in the laboratory manufacture of juices and its effect on the general and sensory characteristics and the extent of their acceptability among the specialized r
... Show MoreA single-blind randomized controlled clinical trial in patients with deep caries and symptoms of reversible pulpitis compared outcomes from a self-limiting excavation protocol using chemomechanical Carisolv gel/operating microscope (self-limiting) versus selective removal to leathery dentin using rotary burs (control). This was followed by pulp protection with mineral trioxide aggregate (MTA) and restoration with glass ionomer cement and resin composite, all in a single visit. The pulp sensibility and periapical health of teeth were assessed after 12 mo, in addition to the differences in bacterial tissue concentration postexcavation. Apical radiolucencies were assessed using cone beam computed tomography/periapical radiographs (CBC
... Show MoreHeavy metals contamination in aquatic ecosystems is considered one of the most important threats of aquatic life. Submerge aquatic plants Ceratophyllum demersum in its non living form used for the removal of trace elements. This article studied the ability of the fine powder of C.demersum for the removal of some heavy metals (HM) like copper, cadmium, lead and chrome from aqueous solution with in variable experimental factors. The study occupy two treatments the first included different hydrogen ions pH within a range of 4, 5,6and 8 with a constant HM concentration (1000 ppm).While the second treatment represented by using variable HM concentrations within a range of (250,500,750and 1000 ppm) with a constant pH=7.In both treatments the a
... Show MoreIt is well known that the rate of penetration is a key function for drilling engineers since it is directly related to the final well cost, thus reducing the non-productive time is a target of interest for all oil companies by optimizing the drilling processes or drilling parameters. These drilling parameters include mechanical (RPM, WOB, flow rate, SPP, torque and hook load) and travel transit time. The big challenge prediction is the complex interconnection between the drilling parameters so artificial intelligence techniques have been conducted in this study to predict ROP using operational drilling parameters and formation characteristics. In the current study, three AI techniques have been used which are neural network, fuzzy i
... Show MoreStaphylococcus haemolyticus is one of the most frequently isolated coagulase-negative staphylococci. The ability to form biofilm is considered as one of the most important virulence factors of coagulase negative staphylococci. There is only limited knowledge of the nature of S. haemolyticus biofilms. This study was aimed at evaluating the ability of S. haemolyticus strains to produce biofilm in the presence of copper oxide nanoparticles (CuONPs). The biological synthesis of nanoparticles is an environmentally friendly approach for large-scale production of nanoparticles. Copper oxide nanoparticles were produced in the current study from the S. haemolyticus viable cell filtrate. UV-visible (UV-Vis) spectroscopy, X-ray diffra
... Show More