Abstract. This work presents a detailed design of a three-jointed tendon-driven robot finger with a cam/pulleys transmission and joint Variable Stiffness Actuator (VSA). The finger motion configuration is obtained by deriving the cam/pulleys transmission profile as a mathematical solution that is then implemented to achieve contact force isotropy on the phalanges. A VSA is proposed, in which three VSAs are designed to act as a muscle in joint space to provide firm grasping. As a mechatronic approach, a suitable type and number of force sensors and actuators are designed to sense the touch, actuate the finger, and tune the VSAs. The torque of the VSAs is controlled utilizing a designed Multi Input Multi Output (MIMO) fuzzy controller. The fuzzy controller input is the force sensors' signals that are used to set the appropriate VSA torque. The fuzzy controller parameters are then tuned using a genetic algorithm as an optimization technique. The objective function of the genetic algorithm is to avoid unbalance torque in the individual joints and to reduce the difference between the values of the supplied VSAs torques. Finally, the operation of the aforementioned finger system is organized through a simple control algorithm. The function of this algorithm is to enable the detection of the unknown object and simultaneously automatically activate the optimized fuzzy controller thus eliminating the necessity of any external control unit.
In this paper, a miniaturized 2 × 2 electro-optic plasmonic Mach– Zehnder switch (MZS) based on metal–polymer–silicon hybrid waveguide is presented. Adiabatic tapers are designed to couple the light between the plasmonic phase shifter, implemented in each of the MZS arms, and the 3-dB input/output directional couplers. For 6 µm-long hybrid plasmonic waveguide supported by JRD1 polymer (r33= 390 pm/V), a π-phase shift voltage of 2 V is obtained. The switch is designed for 1550 nm operation wavelength using COMSOL software and characterizes by 2.3 dB insertion loss, 9.9 fJ/bit power consumption, and 640 GHz operation bandwidth
The dependable and efficient identification of Qin seal script characters is pivotal in the discovery, preservation, and inheritance of the distinctive cultural values embodied by these artifacts. This paper uses image histograms of oriented gradients (HOG) features and an SVM model to discuss a character recognition model for identifying partial and blurred Qin seal script characters. The model achieves accurate recognition on a small, imbalanced dataset. Firstly, a dataset of Qin seal script image samples is established, and Gaussian filtering is employed to remove image noise. Subsequently, the gamma transformation algorithm adjusts the image brightness and enhances the contrast between font structures and image backgrounds. After a s
... Show MoreIn this paper, a theoretical investigation was suggested to study underwater wireless optical communication (UWOC) system based on multiple input–multiple output (MIMO) technique. The modulation schemes such as RZ-OOK, NRZ-OOK, 32-PPM and 4-QAM applied under different coastal water types. MIMO technique enabled the system to transmit data rate with longer distance link. The performance of the proposed system examined by BER and data rate as a metrics. Several impairments such as the types of water by the attenuation of coastal water and the distance link were taken into account for the transmission of the optical signal to appreciate the reliability of the MIMO technique. The theore
Channel estimation (CE) is essential for wireless links but becomes progressively onerous as Fifth Generation (5G) Multi-Input Multi-Output (MIMO) systems and extensive fading expand the search space and increase latency. This study redefines CE support as the process of learning to deduce channel type and signal-tonoise ratio (SNR) directly from per-tone Orthogonal Frequency-Division Multiplexing (OFDM) observations,with blind channel state information (CSI). We trained a dual deep model that combined Convolutional Neural Networks (CNNs) with Bidirectional Recurrent Neural Networks (BRNNs). We used a lookup table (LUT) label for channel type (class indices instead of per-tap values) and ordinal supervision for SNR (0–20 dB,5-dB steps). T
... Show MoreIn this research two algorithms are applied, the first is Fuzzy C Means (FCM) algorithm and the second is hard K means (HKM) algorithm to know which of them is better than the others these two algorithms are applied on a set of data collected from the Ministry of Planning on the water turbidity of five areas in Baghdad to know which of these areas are less turbid in clear water to see which months during the year are less turbid in clear water in the specified area.
In this research two algorithms are applied, the first is Fuzzy C Means (FCM) algorithm and the second is hard K means (HKM) algorithm to know which of them is better than the others these two algorithms are applied on a set of data collected from the Ministry of Planning on the water turbidity of five areas in Baghdad to know which of these areas are less turbid in clear water to see which months during the year are less turbid in clear water in the specified area.
The convergence speed is the most important feature of Back-Propagation (BP) algorithm. A lot of improvements were proposed to this algorithm since its presentation, in order to speed up the convergence phase. In this paper, a new modified BP algorithm called Speeding up Back-Propagation Learning (SUBPL) algorithm is proposed and compared to the standard BP. Different data sets were implemented and experimented to verify the improvement in SUBPL.