The Catharanthus roseus plant was extracted and converted to nanoparticles in this work. The Soxhlet method was used to extract alkaloid compounds from the Catharanthus roseus plant and converted them to the nanoscale. Chitosan polymer was used as a linking material and converted to Chitosan nanoparticles (CSNPs). The extracted alkaloids were linked with Chitosan nanoparticles by maleic anhydride to get the final product (CSNPs-Linker-alkaloids). The pure Chitosan, Chitosan nanoparticles, and CSNPs-Linker-alkaloids were characterized by X-ray diffractometer, and Fourier Transform Infrared spectroscopy. X-ray results show that all samples have an orthorhombic structure with crystallite size in nanodimensions. FTIR spectra prove that the P=O is the cross-linkage between chitosan and phosphate groups by ionic bond, which indicate that the Chitosan nanoparticle has been formed in the solution. FTIR spectrum for CSNPs - Linker - alkaloids appear a new distinct band at 1708.93 cm-1 which demonstrates the presence of C = O esterification. Atomic Force Microscope images of the Chitosan nanoparticles and CSNPs-Linker-alkaloids show that they have almost spherical shapes with average sizes of 90 and 92.6 nm respectively. The electroactive surface area of glassy carbon electrodes (GCE), extract plant, and Linker-alkaloids were calculated in KCl solution containing K3[Fe (CN)6]. The presence of CSNPs-Linker-alkaloids in modified glassy carbon electrodes about 3 times. The successful synthesis of organic nanoparticles from the Catharanthus roseus plant can be used safely in biosensors, environmental monitoring, and biomedical applications.
This study including synthesis of some new Schiff bases compounds [1‐6] from the reaction of Sulfamethoxazole drug with some aromatic aldehydes in classical Schiff base method then treatment Schiff bases with succinic anhydride to get oxazepines rings [7-11]These derivatives were characterized by melting point, FT‐IR, 1H NMR and mass spectra. Some of synthesized compounds were evaluated in vitro for their antibacterial activities against three kinds of pathogenic strains Staphylococcus aureus, Escherichia coli
Background: Essential oils extracted from plants have been widely used in antimicrobial activity, particularly the Callistemon viminalis, with a high number of essential oils extracted. Objectives: To identify the chemical composition of essential oil derived from Callistemon viminalis and evaluates its antimicrobial activity against selected bacterial and fungal strains. Subjects and methods: During the study, the antimicrobial activity of different selected essential oils on some bacteria (Escherichia coli, Pseudomonas aeruginosa, Salmonella enteritidis, Staphylococcus aureus, and Streptococcus pneumonia) and fungus (Candida albicans) was evalua |
New compounds of amids [IV]a-e and Schiff bases [V]f-h derived from 2-amino-1,3,4-oxadiazoles [III] were synthesized and characterized by physical and spectraldata.2-Aamino-1,3,4-oxadiazoles was prepared by the action of bromine on acorresponding semicarbazide [II]( which was prepared by reaction of dialdehyde [I]with semicarbazide hydrochloride ) in the presence of sodium acetate , followed byan intramolecular cyclization . (PDF) Synthesis of New Amides and Schiff Bases derived From 2-Amino -1,3,4- Oxadiazole. Available from: https://www.researchgate.net/publication/326679206_Synthesis_of_New_Amides_and_Schiff_Bases_derived_From_2-Amino_-134-_Oxadiazole [accessed Nov 15 2023].
The ligand Schiff base [(E)-3-(2-hydroxy-5-methylbenzylideneamino)- 1- phenyl-1H-pyrazol-5(4H) –one] with some metals ion as Mn(II); Co(II); Ni(II); Cu(II); Cd(II) and Hg(II) complexes have been preparation and characterized on the basic of mass spectrum for L, elemental analyses, FTIR, electronic spectral, magnetic susceptibility, molar conductivity measurement and functions thermodynamic data study (∆H°, ∆S° and ∆G°). Results of conductivity indicated that all complexes were non electrolytes. Spectroscopy and other analytical studies reveal distorted octahedral geometry for all complexes. The antibacterial activity of the ligand and preparers metal complexes was also studied against gram and negative bacteria.
The ligand Schiff base [(E)-3-(2-hydroxy-5-methylbenzylideneamino)- 1- phenyl-1H-pyrazol-5(4H) –one] with some metals ion as Mn(II); Co(II); Ni(II); Cu(II); Cd(II) and Hg(II) complexes have been preparation and characterized on the basic of mass spectrum for L, elemental analyses, FTIR, electronic spectral, magnetic susceptibility, molar conductivity measurement and functions thermodynamic data study (∆H°, ∆S° and ∆G°). Results of conductivity indicated that all complexes were non electrolytes. Spectroscopy and other analytical studies reveal distorted octahedral geometry for all complexes. The antibacterial activity of the ligand and preparers metal complexes was also studied against gram and negative bacteria.
This work include synthesized and characterization the compound [I] by reaction 1,4-phenylenediamine with chloro acetic acid then this compound reaction with methanol in present sulfuric acid to synthesized ester compound [II] after that reaction with hydrazine hydrate to synthesized acide hydrazide [III] and the later compound reaction with substituted acetophenone[IV]n to synthesized substituted acetophenone hydrazones[V-XI]. In addition synthesized4-formylpyrazole derivatives [XIIXVIII] via cyclisation substituted acetophenone hydrazones [V-XI] with Vilsmeier-Haack reagent DMF/POCl3. The compounds characterized by melting points, FTIR, 1HNMR and mass spectroscopy. The mesomorphic behavior studied by using polarized optical microscopy and
... Show MoreIn the present study, mixed ligand compounds of Mn(II), Ni(II), Co(II), Cu(II), Cd(II) and Hg(II) were synthesized using new Ligand N1,N4-bis (pyrimidin-2-ylcarbamothioyl) succinimide (NPS) derived from [Butanedioyl diisothiocyanate with 2- aminipyridine] as first ligand, proline (pro) as second ligand and evaluation of their antioxidant activities for ligand, nickel and cobalt complex towards 1.1-Di-phenyl-2picrylhydrazyl (DPPH) will be compared to the standard anti-oxidants (i.e. the ascorbic acid). Those materials that have been prepared provided results are a result of exhibiting different activities of the radical scavenging for all of the compounds. Compounds were observed then confirmed through the Fourier-tra
... Show More