This study investigates the characterization and mechanical performance of Stone Mastic Asphalt (SMA) mixtures modified with two types of polymers: styrene–butadiene–styrene (SBS) and high-molecular-weight polyethylene (PE). Neat asphalt cement PG 64-16 was modified using a higher content of SBS and PE at concentrations of 6%, 7%, and 8% by weight of asphalt through the dry blending method to produce Highly Modified Asphalts (HiMA). The physical and rheological properties of the modified binders were evaluated using penetration, softening point, rotational viscosity, and dynamic shear rheometer (DSR) tests. Also, their phase compatibility and morphological changes were evaluated using the storage stability testing and scanning electron microscopy (SEM) analysis. The mechanical performance of the corresponding SMA mixtures was assessed through Marshall stability and flow, moisture susceptibility, crack tolerance index (CT-index), resilient modulus, and rutting resistance tests. Also, a mechanistic durability analysis was conducted using the KENLAYER software. Results indicated that both polymers enhanced the binder’s stiffness and high-temperature performance, with SBS exhibiting greater overall improvements. SBS-modified binders displayed a relatively low softening point difference (ΔT) of 5.1 °C to 5.8 °C, indicating good thermal stability and uniform polymer dispersion. In contrast, PE-modified binders exhibited significantly higher ΔT values, reaching 13.5 °C with 8% PE content, indicating a greater tendency toward phase separation. Moreover, Marshall stability improved substantially, increasing by 43% for 8% SBS-modified mixes and 28% for 8% PE-modified mixes compared to the neat SMA mix. Flow number (FN) results indicated enhanced rutting resistance, with FN values increasing by 2.45 times for SBS mixes and 2.1 times for PE mixes at 8% polymer content. Additionally, moisture susceptibility was significantly improved, as evidenced by the tensile strength ratio (TSR) values of 97% with 8% SBS and 92% with 8% PE, compared to 81% for the neat mix. Resilient modules increased notably, with a 38% rise for 8% SBS mixes and a 24% rise for 8% PE mixes, reflecting enhanced stiffness and load-bearing capacity. Also, the CT-index significantly improved, reaching values of 154 for the 8% SBS mix and 127 for the 8% PE-modified mix, compared to 86 for the neat mix, indicating enhanced resistance to cracking. Finally, both polymer-modified mixes demonstrated improved durability, where the 8% SBS mix exhibited the longest design life (21.66 years) and the highest number of allowable load repetitions (5.42 × 106), followed by 8% PE (13.98 years and 3.50 × 106 repetitions).
Earth dams in regions with moderate to high seismic activity are crucial for protecting downstream communities. Iraq and its neighboring areas have seen recurrent seismic activity, notably the 2017 Halabja Earthquake, which potentially compromised the integrity of the existing earth dam. The Darbandikhan Dam, affected by an earthquake, has inadequacies in its crest and downstream slope, presenting a greater danger of significant earthquake-induced damage compared to cyclic shocks. Consequently, evaluating the dam's safety is essential for safeguarding downstream residents and identifying optimal ways to avert slope stability failure amid recurrent seismic activity. Iraq's seismicity map is being updated to reflect earthquake magni
... Show MoreAccurate predictive tools for VLE calculation are always needed. A new method is introduced for VLE calculation which is very simple to apply with very good results compared with previously used methods. It does not need any physical property except each binary system need tow constants only. Also, this method can be applied to calculate VLE data for any binary system at any polarity or from any group family. But the system binary should not confirm an azeotrope. This new method is expanding in application to cover a range of temperature. This expansion does not need anything except the application of the new proposed form with the system of two constants. This method with its development is applied to 56 binary mixtures with 1120 equili
... Show MoreThis study was carried out at University of Baghdad - College of Agricultural Engineering Sciences - Research Station B during the autumn season 2019-2020, in order to evaluate the effect of Ozone and the foliar application of coconut water and moringa extract on the growth of broccoli plant grown in modified NFT film technology. A factorial experiment (2*5) was carried out within Nested Design with three replicates. The ozone treatment was distributed into the main plots which consisted of oxygen (O2) and ozone (O3). The foliar application of organic nutrients were distributed randomly within each replicate including five treatments, which were the control treatment (T0), Coconut water with two concentrations of 50 (T1) and 100 ml.
... Show MoreThis study was carried out at University of Baghdad - College of Agricultural Engineering Sciences - research station B during the fall season of 2019-2020, in order to evaluate the effect of Ozone enrichment and the foliar application of organic nutrient on nutrient and water use efficiency and fertilizer productivity of broccoli plant using the modified NFT film technology. A factorial experiment (2*5) was carried out within Nested Design with three replicates. The ozone treatment was distributed into the main plots which consisted of oxygen (O2) and ozone (O3). The foliar application of organic nutrients were distributed randomly within each replicate including five treatments, which were the control treatment (T0), Coconut wat
... Show MoreMicrowave heating is caused by the ability of the materials to absorb microwave energy and convert it to heat. The aim of this study is to know the difference that will occur when heat treating the high strength aluminum alloys AA7075-T73 in a microwave furnace within different mediums (dry and acidic solution) at different times (30 and 60) minutes, on mechanical properties and fatigue life. The experimental results of microwave furnace heat energy showed that there were variations in the mechanical properties (ultimate stress, yielding stress, fatigue strength, fatigue life and hardness) with the variation in mediums and duration times when compared with samples without treatment. The ultimate stress, yielding stress and fatigue streng
... Show MoreIn this work, some of new 2-benzylidenehydrazinecarbothioamide derivatives have been prepared by condensation of thiosemicarbazide and different substituted aromatic benzaldehydes in presence of glacial acetic acid to give compounds (1-6), these compounds have characterized by its physical properties and spectroscopic methods. This work also included theoretical study to prove the ability of these compounds as corrosion inhibitors; The program package of Gaussian 09W with its graphical user interface GaussView 5.0 had used for this purpose; the methods of Density Functional Theory (DFT) with basis set of 6-311G (d,p) / hybrid function of B3LYP and semiempirical method of PM3 have been used, the study included theoretical simulation
... Show MoreIn the present work a modification was made on three equations to represent the
experiment data which results for Iraqi petroleum and natural asphalt. The equations
have been developed for estimating the chemical composition and physical properties
of asphalt cement at different temperature and aging time. The standard deviations of
all equations were calculated.
The modified correlation related to the aging time and temperature with penetration
index and durability index of aged petroleum and natural asphalts were developed.
The first equation represents the relationship between the durability index with aging
time and temperature.
loge(DI)=a1+0.0123(2loge T
... Show MorePoly [2-methoxy-5-(2-ethylhexyloxy)-1, 4-phenylenevinyl] (MEH-PPV) thin films were created in this study using both spin coating and drop casting processes. MEH-PPV thin films generated by Ferric Chloride (FeCl3) doping (0.03, 0.06, 0.09, and 0.12 wt%) were studied for some physical features using Fourier-Transform Infrared Spectroscopy (FTIR), Field Emission Scanning Electron Microscopy (FE-SEM), and Energy Dispersive X-ray Spectroscopy (EDX). An FTIR test showed that there was no chemical reaction that occurred between Ferric Chloride (FeCl3) and MEH-PPV, but rather a physical one, that is, an organic material composite occurred. As for FE-SEM, the pure sample MEH-PPV formed uniformly, but when FeCl3 was added by weight, we have differ
... Show MoreIn this review, previous studies on the synthesis and characterization of the metal Complexes with paracetamol by elemental analysis, thermal analysis, (IR, NMR and UV-Vis (spectroscopy and conductivity. In reviewing these studies, the authors found that paracetamol can be coordinated through the pair of electrons on the hydroxyl O-atom, carbonyl O-atom, and N-atom of the amide group. If the paracetamol was a monodentate ligand, it will be coordinated by one of the following atoms O-hydroxyl, O-carbonyl or N-amide. But if the paracetamol was bidentate, it is coordinated by atoms (O-carbonyl and N-amide), (O-hydroxyl and N-amide) or (O-carbonyl and O-hydroxyl). The authors also found that free paracetamol and its complexes have antimicrobial
... Show More