Preferred Language
Articles
/
wxf7L48BVTCNdQwC8l7G
Correlated Hierarchical Autoregressive Models Image Compression
...Show More Authors

Crossref
View Publication
Publication Date
Wed Apr 28 2021
Journal Name
Journal Of Engineering
Post-occupancy evaluation Correlated with Medical Staffs' Satisfaction: A Case Study of Indoor Environments of General Hospitals in Sulaimani City
...Show More Authors

This study aims at identifying the notion of Post-Occupancy Evaluation (POE) pertinent to the performance of three general hospitals constructed inside the Sulaimani City, tracing the relationship between the quality of the indoor environments and medical staff (doctors and nurses) satisfaction level. Using some indoor environment elements in the right way will positively influence the mood, stress level of the medical staff, and patient recovery as a result. The POE toolkits (AEDET and ASPECT) have been implemented on targeted wards at the selected hospitals. AEDET and ASPECT questionnaires were distributed among 152 medical staff to obtain their perspectives. In total, 112 valid questionnaires were received. The medica

... Show More
View Publication Preview PDF
Crossref (4)
Crossref
Publication Date
Thu Oct 31 2019
Journal Name
Journal Of Engineering And Applied Sciences
Comparison of Estimate Methods of Multiple Linear Regression Model with Auto-Correlated Errors when the Error Distributed with General Logistic
...Show More Authors

In this research, we studied the multiple linear regression models for two variables in the presence of the autocorrelation problem for the error term observations and when the error is distributed with general logistic distribution. The auto regression model is involved in the studying and analyzing of the relationship between the variables, and through this relationship, the forecasting is completed with the variables as values. A simulation technique is used for comparison methods depending on the mean square error criteria in where the estimation methods that were used are (Generalized Least Squares, M Robust, and Laplace), and for different sizes of samples (20, 40, 60, 80, 100, 120). The M robust method is demonstrated the best metho

... Show More
View Publication
Scopus (1)
Scopus Crossref
Publication Date
Thu Oct 31 2019
Journal Name
Journal Of Engineering And Applied Sciences
Comparison of Estimate Methods of Multiple Linear Regression Model with Auto-Correlated Errors when the Error Distributed with General Logistic
...Show More Authors

In this research, we studied the multiple linear regression models for two variables in the presence of the autocorrelation problem for the error term observations and when the error is distributed with general logistic distribution. The auto regression model is involved in the studying and analyzing of the relationship between the variables, and through this relationship, the forecasting is completed with the variables as values. A simulation technique is used for comparison methods depending

Scopus (1)
Scopus Crossref
Publication Date
Sat Sep 23 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Image Steganalysis Using Image Quality Metrics (Structural Contents Metric)
...Show More Authors

A new method presented in this work to detect the existence of hidden

data as a secret message in images. This method must be applyied only on images which have the same visible properties (similar in perspective) where the human eyes cannot detect the difference between them.

This method is based on Image Quality Metrics (Structural Contents

Metric), which means the comparison between the original images and stego images, and determines the size ofthe hidden data. We applied the method to four different images, we detect by this method the hidden data and  find exactly the same size of the hidden data.

View Publication Preview PDF
Publication Date
Wed Dec 01 2021
Journal Name
Baghdad Science Journal
Useing the Hierarchical Cluster Analysis and Fuzzy Cluster Analysis Methods for Classification of Some Hospitals in Basra
...Show More Authors

In general, the importance of cluster analysis is that one can evaluate elements by clustering multiple homogeneous data; the main objective of this analysis is to collect the elements of a single, homogeneous group into different divisions, depending on many variables. This method of analysis is used to reduce data, generate hypotheses and test them, as well as predict and match models. The research aims to evaluate the fuzzy cluster analysis, which is a special case of cluster analysis, as well as to compare the two methods—classical and fuzzy cluster analysis. The research topic has been allocated to the government and private hospitals. The sampling for this research was comprised of 288 patients being treated in 10 hospitals. As t

... Show More
View Publication Preview PDF
Scopus (5)
Crossref (3)
Scopus Clarivate Crossref
Publication Date
Sun Aug 01 2021
Journal Name
International Journal Of Electrical And Computer Engineering (ijece)
Audio compression using transforms and high order entropy encoding
...Show More Authors

<span>Digital audio is required to transmit large sizes of audio information through the most common communication systems; in turn this leads to more challenges in both storage and archieving. In this paper, an efficient audio compressive scheme is proposed, it depends on combined transform coding scheme; it is consist of i) bi-orthogonal (tab 9/7) wavelet transform to decompose the audio signal into low &amp; multi high sub-bands, ii) then the produced sub-bands passed through DCT to de-correlate the signal, iii) the product of the combined transform stage is passed through progressive hierarchical quantization, then traditional run-length encoding (RLE), iv) and finally LZW coding to generate the output mate bitstream.

... Show More
View Publication Preview PDF
Scopus (10)
Crossref (4)
Scopus Crossref
Publication Date
Sat Dec 02 2017
Journal Name
Al-khwarizmi Engineering Journal
Speech Signal Compression Using Wavelet And Linear Predictive Coding
...Show More Authors

A new algorithm is proposed to compress speech signals using wavelet transform and linear predictive coding. Signal compression based on the concept of selecting a small number of approximation coefficients after they are compressed by the wavelet decomposition (Haar and db4) at a suitable chosen level and ignored details coefficients, and then approximation coefficients are windowed by a rectangular window and fed to the linear predictor. Levinson Durbin algorithm is used to compute LP coefficients, reflection coefficients and predictor error. The compress files contain LP coefficients and previous sample. These files are very small in size compared to the size of the original signals. Compression ratio is calculated from the size of th

... Show More
View Publication Preview PDF
Publication Date
Fri Mar 01 2019
Journal Name
Neurocomputing
A survey on video compression fast block matching algorithms
...Show More Authors

View Publication
Scopus (15)
Crossref (13)
Scopus Clarivate Crossref
Publication Date
Wed Mar 10 2021
Journal Name
Baghdad Science Journal
Compression-based Data Reduction Technique for IoT Sensor Networks
...Show More Authors

Energy savings are very common in IoT sensor networks because IoT sensor nodes operate with their own limited battery. The data transmission in the IoT sensor nodes is very costly and consume much of the energy while the energy usage for data processing is considerably lower. There are several energy-saving strategies and principles, mainly dedicated to reducing the transmission of data. Therefore, with minimizing data transfers in IoT sensor networks, can conserve a considerable amount of energy. In this research, a Compression-Based Data Reduction (CBDR) technique was suggested which works in the level of IoT sensor nodes. The CBDR includes two stages of compression, a lossy SAX Quantization stage which reduces the dynamic range of the

... Show More
View Publication Preview PDF
Scopus (40)
Crossref (27)
Scopus Clarivate Crossref
Publication Date
Fri May 17 2013
Journal Name
International Journal Of Computer Applications
Fast Lossless Compression of Medical Images based on Polynomial
...Show More Authors

In this paper, a fast lossless image compression method is introduced for compressing medical images, it is based on splitting the image blocks according to its nature along with using the polynomial approximation to decompose image signal followed by applying run length coding on the residue part of the image, which represents the error caused by applying polynomial approximation. Then, Huffman coding is applied as a last stage to encode the polynomial coefficients and run length coding. The test results indicate that the suggested method can lead to promising performance.

View Publication Preview PDF
Crossref (7)
Crossref