Slurry infiltrated fibrous concrete (SIFCON) is a modern type of fibre reinforced concrete (FRC). It has unique properties; SIFCON is superior in compressive strength, flexural strength, tensile strength, impact resistance, energy absorption and ductility. Because of this superiority in these characteristics, SIFCON was qualified for applications of special structures, which require resisting sudden dynamic loads such as explosions and earthquakes. The main aim of this investigation is to determine the effect of fibre type on the apparent density of SIFCON and on performance under impact load. In this investigation, hook-end steel fibre and polyolefin fibre were used. Purely once and hybrid in different portions again. After reviewing previous research, including [1, 2, 3] references three trail mixes were tested with a volume fraction of fibres (4, 6 and 8)%, and after testing them, a volume fraction of 6% was chosen. We chose the volume fraction of 6% and made the type of fibre the variable for comparison in this research. In hybrid fibres this fraction was divided once 2/3 steel fibres with 1/3 polyolefin fibres and vice versa. The specimens of the Impact resistance test were made with two specimens for each series, which are panels with dimensions of 50×50×5 cm. Three cubes were made for each series in the SIFCON apparent density test. Test results prove SIFCON produced from 2/3 polyolefin and 1/3 steel fibres achieved a good density reduction that contributes to reducing the self-weight of the structural element, which is a major aim in this investigation, reducing cost and maintaining high impact resistance.
loaded reinforced concrete circular short columns. An experimental investigation into the behavior
of 24 short reinforced concrete columns with and without steel fibers was carried out. The columns
had a circular section (200 mm diameter and 900 mm long). Test variables include concrete
strength, spacing of spiral reinforcement, and inclusion of steel fibers. The axial stress and axial
strains were obtained and used to evaluate the effects of the presence of steel fibers. It was found
that the addition of steel fibers slightly improves the load carrying capacity of the tested columns
whereas it significantly enhances the ductility of these specimens. Test results also indicated that for
the same confinement parameter
Nowadays, the use of recycled waste construction materials instead of aggregates is becoming popular in construction owing to its environmental benefits. This paper presents an experimental and analytical campaign to study the behavior of axially loaded columns constructed from recycled aggregates. The latter was used instead of natural aggregates, and they were collected from the waste of previous concrete constructions. Different concrete mixtures made from varying amounts of recycled aggregates ranged from 0 to 50% of the total coarse aggregate were conducted to achieve 28 MPa. The effect of steel fibers is another investigated variable with volumes ranged from 0 to 2% concerning concrete’s mixture. The experimental
... Show MoreGlobal warming and environmental damage have become major problems. The production of Portland cement releases large quantities of gas, which cause pollution to the atmosphere. This problem can be solved via the use of sustainable materials, such as glass powder. This study investigates the effect of partial replacement of cement with sustainable glass powder at various percentages (0, 15, 20, and 25%) by weight of cement on some mechanical properties (compressive strength, flexural strength, absorption, and dry density) of Reactive Powder Concrete (RPC) containing a percentage of Polypropylene fibers (PRPC) of 1% by weight. Furthermore, steam curing was performed for 5 hours at 90oC after hardening the sample directly. The RPC was
... Show MoreBackground: One common undesirable side effect of orthodontic treatment with fixed appliances is the development of incipient caries lesions around brackets, particularly in patients with poor oral hygiene. Different methods have been used to prevent demineralization; the recent effort to improve the resistance against the demineralization is by the application of lasers. Materials and method: Thirty human premolars extracted for orthodontic purposes were used to test the effect of two energy level of ER-YAG laser on enamel resistance to demineralization. The brackets were bonded on the teeth and all the labial surface excluding 2 mm area gingival to the brackets were painted with acid resistance varnish. Three groups were generated. The fi
... Show MoreIn this study, geopolymer mortar was designed in various experimental combinations employing 1% micro steel fibers and was subjected to different temperatures, according to the prior works of other researchers. The geopolymer mortar was developed using a variety of sustainable material proportions (fly ash and slag) to examine the influence of fibers on its strength. The fly ash weight percentage was 50%, 60%, and 70% by slag weight to study its effect on the geopolymer mortar's properties. The optimal ratio produced the most significant results when mixed at a 50:50 ratio of fly ash and slag with 1% micro steel fibers at curing temperature 240oC for 4 hours through two days. The compressive strength of the geopolymer mortar increas
... Show MorePlant tissue culture techniques were exploited for the micropropigation of Lisianthus (Eustoma grandiflora). Different concentrations of Benzyl adenine (BA), 6- Furfural amino purine (Kinetin), Indol butyric acid (IBA), were investigated in their effects at different micropropagation stages. Three explants (apical shoots, internodes, leaf discs) were used in this study. The effect of the interaction between BA and IBA on shoot multiplication was investigated in increasing the number of shoots on explants. Rooting was also studied after inclusion of IBA and NAA to Murashige and Skoog, 1962 culture medium (MS). During acclimatization stage, different ratios of river sand and peat moss as agricultural media were tested and plantlets survival w
... Show MoreThe research’s main goal is to investigate the effects of using magnetic water in concrete mixes with regard to various mechanical properties such as compressive, flexural, and splitting tensile strength. The concrete mix investigated was designed to attain a specified cylinder compressive strength (30 MPa), with mix proportions of 1:1.8:2.68 cement to sand to crushed aggregate. The cement content was about 380 kg/m3, with a w/c ratio equal to 0.54, sand content of about 685 kg/m3, and gravel content of about 1,020 kg/m3. Magnetic water was prepared via passing ordinary water throughout a magnetic field with a magnetic intensity of 9,000 Gauss. The strength test
Alginate from Large brown seaweeds act as natural polymer has been investigated as polymer and has been added to concrete in different percentages ( 0% , 0.5% , 1% and 1.5% ) by the cement weight and the study show the effect of using alginate biopolymer admixtures on some of the fresh properties of the concrete (slump & the density fresh) also in the hardened state ( Compressive strength , Splitting tensile strength and Flexural strength ) at 28 days. The mix proportion was (1:2.26:2.26) (cement: sand: gravel) respectively and at constant w/c equal to 0.47. The results indicate that the use of alginate as a percent of the cement weight possess a positive effect on fresh properties of co
... Show MoreBackground: Nicotine is the foremost chemical constituent responsible for addiction in tobacco products, in the non-ionized condition can be easily absorbed via epithelial tissue of the lung, the mouth, the nose and across the skin
Objective:The study examines the harmful effect of the nicotine which is an important component of cigarette in vitro.
Type of the study: Cross-sectional study.
Methods: Examines the harmful effect of the nicotine which is an important component of cigarette in vitro by using two types of lung cancer cell lines (H460 TP53+/+, H441 TP53-/-).