In present work the effort has been put in finding the most suitable color model for the application of information hiding in color images. We test the most commonly used color models; RGB, YIQ, YUV, YCbCr1 and YCbCr2. The same procedures of embedding, detection and evaluation were applied to find which color model is most appropriate for information hiding. The new in this work, we take into consideration the value of errors that generated during transformations among color models. The results show YUV and YIQ color models are the best for information hiding in color images.
Machine learning models have recently provided great promise in diagnosis of several ophthalmic disorders, including keratoconus (KCN). Keratoconus, a noninflammatory ectatic corneal disorder characterized by progressive cornea thinning, is challenging to detect as signs may be subtle. Several machine learning models have been proposed to detect KCN, however most of the models are supervised and thus require large well-annotated data. This paper proposes a new unsupervised model to detect KCN, based on adapted flower pollination algorithm (FPA) and the k-means algorithm. We will evaluate the proposed models using corneal data collected from 5430 eyes at different stages of KCN severity (1520 healthy, 331 KCN1, 1319 KCN2, 1699 KCN3 a
... Show MoreIn this paper, our aim is to solve analytically a nonlinear social epidemic model as an initial value problem (IVP) of ordinary differential equations. The mathematical social epidemic model under study is applied to alcohol consumption model in Spain. The economic cost of alcohol consumption in Spain is affected by the amount of alcohol consumed. This paper refers to the study of alcohol consumption using some analytical methods. Adomian decomposition and variation iteration methods for solving alcohol consumption model have used. Finally, a compression between the analytic solutions of the two used methods and the previous actual values from 1997 to 2007 years is obtained using the absolute and
... Show MoreMonaural source separation is a challenging issue due to the fact that there is only a single channel available; however, there is an unlimited range of possible solutions. In this paper, a monaural source separation model based hybrid deep learning model, which consists of convolution neural network (CNN), dense neural network (DNN) and recurrent neural network (RNN), will be presented. A trial and error method will be used to optimize the number of layers in the proposed model. Moreover, the effects of the learning rate, optimization algorithms, and the number of epochs on the separation performance will be explored. Our model was evaluated using the MIR-1K dataset for singing voice separation. Moreover, the proposed approach achi
... Show MoreThe purpose of this paper is to develop a hybrid conceptual model for building information modelling (BIM) adoption in facilities management (FM) through the integration of the technology task fit (TTF) and the unified theory of acceptance and use of technology (UTAUT) theories. The study also aims to identify the influence factors of BIM adoption and usage in FM and identify gaps in the existing literature and to provide a holistic picture of recent research in technology acceptance and adoption in the construction industry and FM sector.
A theoretical calculation of the reorganization energies is demonstrated for semiconductor (TiOâ‚‚, ZnO) and organic dye (safranine T, and coumarin) with a variety solvent such that (water, 1Âpropanol, Formamide, Acetonitrile and Ethanol). The reorganization energy values for dye –semiconductor interface system are large in high polar solvent (water 741 .0 ï¬ , Acetonitrile 708 .0 ï¬ , Ethanol 669 .0 ï¬ ) and small in low polar solvent(1Âpropanol 635 .0 ï¬ . The reorganization energy in safranine T –semiconductor system is larger ( 635 741.0 ï€ )than in coumarin –semiconductor for with the same solvents ( 612
... Show MoreThis research aimed to develop a simulation traffic model for an urban street with heterogeneous traffic capable of analyzing different types of vehicles of static and dynamic characteristics based on trajectory analysis that demonstrated psychophysical driver behavior. The base developed model for urban traffic was performed based on the collected field data for the major urban street in Baghdad city. The parameter; CC1 minimum headway (represented the speed-dependent of the safety distance from stop line that the driver desired) justified in the range from (2.86sec) to (2.17 sec) indicated a good match to reflect the actual traffic behavior for urban traffic streets. A good indication of the convergence between simulat
... Show More