Preferred Language
Articles
/
woZ8WIYBIXToZYALkoin
Influence of Temperature on Mechanical Properties of Asphalt Concrete Mixture
...Show More Authors

Asphalt binder is a thermoplastic material that conducts as an elastic solid at lower service temperatures or throughout fast loading rate. At a high temperature or slow rate of loading, asphalt binder conducts as a different liquid. The classical duplication generates a required to assess the mechanical properties of asphalt concrete at the anticipated service temperature to reduce the stress cracking, which happens at lower temperatures, fatigue, and the plastic deformation at higher temperatures (rutting). In this study, an achievement was made to assess the effect of temperature on the mechanical characteristics of asphalt concrete mixes. A total of 132 asphalt concrete samples were attended utilizing two asphalt cement grades (40-50) and (60-70), and one aggregate gradation (type III A for wearing course) SCRB (R/9, 2003). The specimens were then tested at five different temperatures represented by 5, 15, 25, 40, and 60̊C to estimate their mechanical characteristics, including resilient modulus (Mr), permanent deformation, and fatigue features as Marshall features. The average resilient modulus (Mr), which belongs to a temperature of 5°C, was 328036 psi revealing an approximate loss of 88% of its strength in resilient modulus when there is an increase in temperature over 60°C. Meanwhile, there is an increase in the permanent deformation accumulation rate (slope value) of about three folds as the temperature changes from (5- 60) °C whereas the fatigue life reduces 32 % with the rise in temperature from (5-25) °C.

Scopus Crossref
Preview PDF
Quick Preview PDF
Publication Date
Thu Jan 31 2019
Journal Name
Journal Of Engineering
Mechanical Properties Enhancement of Conventional Glass Ionomer Cement by Adding Zirconium Oxide Micro and Nanoparticles
...Show More Authors

The aim of this work is to enhance the mechanical properties of the glass ionomer cement GIC (dental materials) by adding Zirconium Oxide ZrO2 in both micro and nano particles. GIC were mixed with (3, 5 and 7) wt% of both ZrO2 micro and nanoparticles separately. Compressive strength (CS), biaxial flexural strength (BFS), Vickers Microhardness (VH) and wear rate losses (WR) were investigated. The maximum compression strength was 122.31 MPa with 5 wt. % ZrO2 micro particle, while 3wt% nanoparticles give highest Microhardness and biaxial flexural strength of 88.8 VHN and 35.79 MPa respectively. The minimum wear rate losses were 3.776µg/m with 7 wt. % ZrO2 nanoparticle. GIC-contai

... Show More
View Publication Preview PDF
Crossref (13)
Crossref
Publication Date
Tue Jan 01 2019
Journal Name
Technologies And Materials For Renewable Energy, Environment And Sustainability: Tmrees19gr
Improvement of some mechanical properties of epoxy using uncarbonized and carbonized eggshell powder
...Show More Authors

View Publication
Scopus (7)
Crossref (5)
Scopus Clarivate Crossref
Publication Date
Mon Oct 01 2012
Journal Name
Iraqi Journal Of Physics
Comparison study of some mechanical properties of micro and nano silica EP composites
...Show More Authors

The effect of micro-and nano silica particles (silica SiO2 (100 μm), Fused silica (12nm)) on some mechanical properties of epoxy resin was investigated (Young's modulus, Flexural strength). The micro-and nano composites were prepared by using three steps process with different volume fraction of micro-and nano particles (1, 2, 3, 4, 5, 7, 10, 15, and 20 vol. %). Flexural strength and Young's modulus of nano composites were increased at low volume fraction (max. enhancement at 4 vol.% ). However at higher volume fraction both Young's modulus and flexural strength decrease. Moreover, above, the mechanical properties are enhanced more than that of neat epoxy resin. The flexural strength decreases with increasing the volume fraction of micr

... Show More
View Publication Preview PDF
Publication Date
Wed May 01 2019
Journal Name
Solid State Phenomena
Preparation and Study of the Mechanical Properties of Unsaturated Polyester Resin/Graphene Nanocomposite
...Show More Authors

Nanocomposite was prepared using unsaturated polyester (UP) resin as a matrix and graphene nanoparticles as a reinforcement material in six percentage weights (0, 0.1, 0.2, 0.3, 1 and 1.5%). Mechanical, calorimetric and thermal studies were performed on the (UP) resin/graphene nanocomposite. All tests showed a clear improvement of all mechanical properties examined (hardness, flexural strength (F.S), impact strength (I.S) and tensile strength (T.S)) with increasing graphene percentage. In addition, the temperature of glass transition and thermal conductivity of this composite increased with increasing graphene content.

View Publication
Scopus (4)
Crossref (1)
Scopus Crossref
Publication Date
Mon Dec 11 2017
Journal Name
Al-khwarizmi Engineering Journal
Improvement of Mechanical and Rheological Properties of Natural Rubber for Anti-Vibration Applications
...Show More Authors

Abstract  

This research aims to study and improve the passivating specifications of rubber resistant to  vibration. In this paper, seven different rubber recipes were prepared based on mixtures of natural rubber(NR)  as an essential part in addition to the synthetic rubber (IIR, BRcis, SBR, CR)with different rates. Mechanical tests such as tensile strength, hardness, friction, resistance to compression, fatigue and creep testing in addition to the rheological test were performed. Furthermore, scanning electron microscopy (SEM)test was used to examine the structure morphology of rubber. After studying and analyzing the results, we found that, recipe containing (BRcis) of 40% from th

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu Nov 08 2018
Journal Name
Iraqi National Journal Of Nursing Specialties
Evaluation of some mechanical properties of dental alginate impression materials after fluoride addition
...Show More Authors

Objective:Fluorid-containing dental alginate impression materials can exert a considerable reduction in
enamel solubility. The objective was to evaluate the effect of fluoride addition on the setting time and
compressive strength of alginate impression materials.
Methodology: 60 samples were constructed from alginate impression material (30 samples for setting
time test and 30 samples for compressive strength test).Specimens of each test divided into three
subgroup. Group A: 10 specimens of alginate were mixed with distilled water [control], Group B: 10
specimens of alginate were mixed with100-ppm fluoride and Group C:10 specimens of alginate were
mixed with 2%Naf.
Results: the result of setting time test showed t

... Show More
View Publication Preview PDF
Publication Date
Thu Mar 06 2025
Journal Name
International Journal Of Applied Mechanics And Engineering
Comparison of The Mechanical Properties of Low-Cost Bio Fiber Reinforced Polymer Composites
...Show More Authors

In this study, the physical, and mechanical properties of low-cost and biocomposites were evaluated. The walnut shell and date palm frond fibers were thermally treated in an oven at a temperature of 70°C and then chemically treated with NaOH and distilled water solution, after these treatments, the biocomposite materials will be thermally treated again at 50°C. This procedure was performed for three types of biocomposite; Walnut shell Fiber Reinforced Polymer (WFRP), Date palm Fiber Reinforced Polymer (DFRP), and Hybrid Fiber Reinforced Polymer (HFRP), whereas the biocomposite sheets consisting of 30% biofibers and 70% unsaturated polyester, the mechanical test specimens were cut by a CNC machine according to ASTM standards. The e

... Show More
View Publication Preview PDF
Scopus (1)
Crossref (1)
Scopus Crossref
Publication Date
Thu Mar 02 2023
Journal Name
East European Journal Of Physics
Investigation of the Impact of Glass Waste in Reactive Powder Concrete on Attenuation Properties for Bremsstrahlung Ray
...Show More Authors

Reactive Powder Concrete (RPC) is one of the most advanced recent high compressive strength concrete. This work explored the effects of using glass waste as a fractional replacement for fine aggregate in reactive powder concrete at levels of 0%, 25%, 50%, and 100%. Linear and mass attenuation coefficients have been calculated as a function of the sample's thickness and bremsstrahlung energy. These coefficients were obtained using energy selective scintillation response to bremsstrahlung having an energy ranging from (0.1-1.1) MeV. In addition, the half-value thickness of the samples prepared has been investigated. It was found that there is a reversal association between the attenuation coefficient and the energy of the bremsstrahlu

... Show More
View Publication
Scopus (2)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Tue Dec 01 2020
Journal Name
Iraqi Journal Of Physics
Study The Influence of Doping Electric and Magnetic Nanoparticles on The Nonlinear Optical Properties of Nematic Liquid Crystals
...Show More Authors

The nonlinear optical properties response of nematic liquid crystal (6CHBT) and the impact of doping with two kinds of nanoparticles; Fe3O4 magnetic nanoparticles and SbSI ferroelectric nanoparticles have been studied using the non-linear dynamic method through z-scan measurement technique. This was achieved utilizing CW He-Ne laser. The pure LC and magnetic LC nanoparticle composite samples had a maximum absorption while the ferroelectric LC nanoparticle composite had a minimum absorption of the incident light. The nonlinear refractive index was positive for the pure LC and the rod-like ferronematic LC composite samples, while it was negative for the ferroelectric LC composite. The studying of the nonlinear optical

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Fri Sep 01 2023
Journal Name
Iraqi Journal Of Physics
Influence of DC Magnetron Sputtering Power on Structural, Topography, and Gas Sensor Properties of Nb2O5/Si Thin Films.
...Show More Authors

This study focuses on synthesizing Niobium pentoxide (Nb2O5) thin films on silicon wafers and quartz substrates using DC reactive magnetron sputtering for NO2 gas sensors. The films undergo annealing in ambient air at 800 °C for 1 hr. Various characterization techniques, including X-ray diffraction (XRD), atomic force microscopy (AFM), energy-dispersive X-ray spectroscopy (EDS), Hall effect measurements, and sensitivity measurements, are employed to evaluate the structural, morphological, electrical, and sensing properties of the Nb2O5 thin films. XRD analysis confirms the polycrystalline nature and hexagonal crystal structure of Nb2O5. The optical band gap values of the Nb2O5 thin films demonstrate a decrease from 4.74 to 3.73 eV

... Show More
View Publication
Crossref (2)
Crossref