Corrosion Resistance Enhancement for low carbon steel is very important to extend its life service, the coating process is one of the methods which can using to achieve this, and it's the most important in surface treatments to improve the properties of metals and alloys surfaces such as corrosion resistance. In this work, low carbon steel was nitrided and coated with nano zinc using gas phase coating technical, to enhance the resistance of corrosion. The process included adding two layers. The first, a nitride layer, was added by precipitating nitrogen (N) gas, and the second, a zinc (Zn) layer, was added by precipitating Zn. The process of precipitating was carried out at different periods (5, 10, and 15 minutes). Scan electron microstructure (SEM), X-ray diffraction (XRD) and corrosion tests were carried out. The SEM and XRD results showed a new microstructure with the emergence of new phases (C3N4, Zn(N3)2, and γN). Also, the results of the corrosion test showed a significant improvement in corrosion resistance through a reduction in the corrosion rate (CR) and corrosion current density (icorr) which reached (1.598x10-3 mmpy) and (1.422x10-7 Amp/cm2) respectively, for coated samples, compared with 1.803×10-1 and 1.604x10-5, respectively, for the base metal. also found an appreciable increase in corrosion protection efficiency (CPE), which reached 99.11%.
An experimental program was conducted to determine the residual of composite Steel Beams-Reinforced Concrete (SB-RC) deck floors fabricated from a rolled steel beam topped with a reinforced concrete slab, exposed to high temperatures (fire flame) of 300, 500, and 700ºC for 1 hour, and then allowed to cool down by leaving them in the lab condition to return to the ambient temperature. The burning results showed that, by exposing them to a fire flame of up to 300ºC, no serious permanent deflection occurred. It was also noticed that the specimen recovered 93% of 19.2 mm of the deflection caused by burning. The recovered deflection of burned composite SB-RC deck floor at 500ºC was 40% of 77.9 mm of the deflection caused by burning with a res
... Show MoreAbstract
In the present work, thermal diffusivity and heat capacity measurements have been investigated in temperature range between RT and 1473 K for different duplex stainless steel supplied by Outokumpu Stainless AB, Sweden. The purpose of this study is to get a reliable thermophysical data of these alloys and to study the effect of microstructure on the thermal diffusivity and heat capacity value. Results show the ferrite content in the duplex stainless steel increased with temperature at equilibrium state. On the other hand, ferrite content increased with increasing Cr/Ni ratio and there is no significant effect of ferrite content on the thermal diffusivity value at room temperature. Furthermore, the heat capacity of all sam
... Show MoreThe aim of this study is to investigate the antibacterial capabilities of different coating durations of three nanoparticle (NP) coatings: molybdenum (Mo), tantalum (Ta), and zinc oxide (ZnO), and their effects on the surface characteristics of 316L stainless steel (SS). The coated substrates underwent characterization utilizing field emission scanning electron microscopy (FE-SEM), energy dispersive X-ray spectrometry (EDX), and X-ray diffractometer (XRD) techniques. The antibacterial efficacy of NPs was evaluated using the agar diffusion method. The FE-SEM and EDX images confirmed the presence of nano-sized particles of Mo, Ta, and ZnO on the surface of the substrates with perfectly symmetrical spheres and a uniform distribution of
... Show MoreThe present work deals with an experimental investigation of charging and discharging processes in thermal storage system using a phase change material PCM. Paraffin wax was used as the PCM which is formed in spherical capsules and packed in a cylindrical packed column which acted as an energy storage system. Air was used as the heat transfer fluid HTF in thermal storage unit. The effect of flow rate and inlet temperature of HTF on the time of charging and discharging process were studied. The results showed that the faster storage of thermal energy can be made by high flow rate of heat transfer fluid HTF and high inlet temperature of heat transfer fluid. It was found that at 65°C HTF inlet temperature, the melting and solidification pr
... Show MoreTo produce Zinc Oxide NanoParticles, ZnO-NPs, different methods can be used. However, the utilization of Liquid-Phase Pulsed Laser Ablation, LP-PLA, methodology of three distinct environment of aqueous using pure zinc plate will be one of the approaches for this job. Thus, in this work, concentrates on the influence of the results after employing some changes on the environment in other words, the influence of the NPs size and/or the NPs availability/appearance. Cetyltrimethylammonium Bromide, CTAB, is one of the three surfactants that have been used in the water-based solution. That is, the Sodium Dodecyl Sulfate, SDS, besides the Distilled Water, DW, the three surfactants will be ready when the molarity of the DW is around 10− 3 M. Th
... Show MoreBehavioral and emotional disorders represent one of the commonest problems facing children in particular and disturbing their parents and educators in general. This is because Iraqi people have long been living in difficult conditions and faced various terrorists’ operations, such as killing, destruction, robbery, and looting. Such operations are said to be one of the reasons that leads to the development of such disorders, and may negatively affect the psyche of the child and be reflected on his behavior as represented by playing with the IPad for hours, and suffering from nightmares. Accordingly, the current research aims to examine specifically the commonest negative behavioral disorders among kindergarten children during the post-t
... Show MoreA simple, environmental friendly and selective sample preparation technique employing porous membrane protected micro-solid phase extraction (μ-SPE) loaded with molecularly imprinted polymer (MIP) for the determination of ochratoxin A (OTA) is described. After the extraction, the analyte was desorbed using ultrasonication and was analyzed using high performance liquid chromatography. Under the optimized conditions, the detection limits of OTA for coffee, grape juice and urine were 0.06 ng g−1, 0.02 and 0.02 ng mL−1, respectively while the quantification limits were 0.19 ng g−1, 0.06 and 0.08 ng mL−1, respectively. The recoveries of OTA from coffee spiked at 1, 25 and 50 ng g−1, grape juice and urine samples at 1, 25 and 50 ng mL
... Show MoreIn the present investigation, bed porosity and solid holdup in viscous three-phase inverse fluidized bed (TPIFB) are determined for aqueous solutions of carboxy methyl cellulose (CMC) system using polyethylene and polypropylene as a particles with low-density and diameter (5 mm) in a (9.2 cm) inner diameter with height (200 cm) of vertical perspex column. The effectiveness of gas velocity Ug , liquid velocity UL, liquid viscosity μL, and particle density ρs on bed porosity BP and solid holdups εg were determined. The bed porosity increases with "increasing gas velocity", "liquid velocity", and "liquid viscosity". Solid holdup decreases with increasing gas, liquid
... Show MoreAbstract: In the present work, the heat transfer of Nano Aluminum Oxide -NAO- has been studied practically to define the appropriate insulation conditions. This study focuses on finding of the amount of heat transfer through a glass substrate that is coated with nanoalumina doped on PMMA matrix. The optical and thermal properties were systematically investigated. The density of heat flow rate, was calculated in the range values (240-260) W/m2 while the optimum values confine between (250-260) W/m2 at temp. (25-35)Co. The results showed that the thermal insulation of the sample was significantly enhanced at temp. (30-50)Co. The simulated net heat transfer through window decreased linearly with incr
... Show MoreIn this research we investigated the corrosion behavior of the commertialy pure titanium and Ti-6Al-4V alloy that coated with hydroxyapatite by electrochemical deposition with applied voltage (6,9,12) Volt from aqueous solution containing Ca(NO3)2.H2O =7.0 gm/l , (NH4)2HPO4 =3.5 gm/l , Na(NO3)2 = 8.5 gm/l in order to improve the bonding strength of hydroxyapetite and medical metals and alloys and increasing the biocompatibility. The coating layer morphology was investigated by XRD, Optical microscope , and SEM tests, the corrosio tests was made by use senthesys simulated body fluid (SBF) , and we found that the propreate voltage for coatint on Ti was 9 Volt and for Ti-6Al-4Vwas12Volt.