Artificial Neural Networks (ANN) is one of the important statistical methods that are widely used in a range of applications in various fields, which simulates the work of the human brain in terms of receiving a signal, processing data in a human cell and sending to the next cell. It is a system consisting of a number of modules (layers) linked together (input, hidden, output). A comparison was made between three types of neural networks (Feed Forward Neural Network (FFNN), Back propagation network (BPL), Recurrent Neural Network (RNN). he study found that the lowest false prediction rate was for the recurrentt network architecture and using the Data on graduate students at the College of Administration and Economics, University of Baghdad for the period from 2014-2015 to The academic year 2017-2018. The variables are use in the research is (student’s success, age, gender, job, type of study (higher diploma, master’s, doctorate), specialization (statistics, economics, accounting, industry management, administrative management, and public administration) and channel acceptance). It became clear that the best variables that affect the success of graduate students are the type of study, age and job.
Wireless Body Area Sensor Networks (WBASNs) have garnered significant attention due to the implementation of self-automaton and modern technologies. Within the healthcare WBASN, certain sensed data hold greater significance than others in light of their critical aspect. Such vital data must be given within a specified time frame. Data loss and delay could not be tolerated in such types of systems. Intelligent algorithms are distinguished by their superior ability to interact with various data systems. Machine learning methods can analyze the gathered data and uncover previously unknown patterns and information. These approaches can also diagnose and notify critical conditions in patients under monitoring. This study implements two s
... Show MoreIn this paper, a handwritten digit classification system is proposed based on the Discrete Wavelet Transform and Spike Neural Network. The system consists of three stages. The first stage is for preprocessing the data and the second stage is for feature extraction, which is based on Discrete Wavelet Transform (DWT). The third stage is for classification and is based on a Spiking Neural Network (SNN). To evaluate the system, two standard databases are used: the MADBase database and the MNIST database. The proposed system achieved a high classification accuracy rate with 99.1% for the MADBase database and 99.9% for the MNIST database
Deep learning convolution neural network has been widely used to recognize or classify voice. Various techniques have been used together with convolution neural network to prepare voice data before the training process in developing the classification model. However, not all model can produce good classification accuracy as there are many types of voice or speech. Classification of Arabic alphabet pronunciation is a one of the types of voice and accurate pronunciation is required in the learning of the Qur’an reading. Thus, the technique to process the pronunciation and training of the processed data requires specific approach. To overcome this issue, a method based on padding and deep learning convolution neural network is proposed to
... Show MoreWith its rapid spread, the coronavirus infection shocked the world and had a huge effect on billions of peoples' lives. The problem is to find a safe method to diagnose the infections with fewer casualties. It has been shown that X-Ray images are an important method for the identification, quantification, and monitoring of diseases. Deep learning algorithms can be utilized to help analyze potentially huge numbers of X-Ray examinations. This research conducted a retrospective multi-test analysis system to detect suspicious COVID-19 performance, and use of chest X-Ray features to assess the progress of the illness in each patient, resulting in a "corona score." where the results were satisfactory compared to the benchmarked techniques. T
... Show MoreIn this study, we focused on the random coefficient estimation of the general regression and Swamy models of panel data. By using this type of data, the data give a better chance of obtaining a better method and better indicators. Entropy's methods have been used to estimate random coefficients for the general regression and Swamy of the panel data which were presented in two ways: the first represents the maximum dual Entropy and the second is general maximum Entropy in which a comparison between them have been done by using simulation to choose the optimal methods.
The results have been compared by using mean squares error and mean absolute percentage error to different cases in term of correlation valu
... Show MoreDue to the importance of egg parasitoids inthe natural and biological control of economically important insects, including egg parasitoid Pseudoligositaba bylonica Viggiani on dubas bug, the spread of the parasitoid and population distribution of parasitoid, In order to estimate the role of parasitoid as one of the biological factors in decreasing population density of dubas bug on date palm. Some aspects of the life of parasitoids were also studied, including the role of insect parasitoids in organizing the population of their families, geographical distribution and hosts range of genus Pseudoligosita, seasonal presence of parasitoid Pseudoligositaba bylonica Viggiani (Hymenoptera: Trichogrammatidae) , life studies and percentages
... Show MoreThe inhibitory effect of acetone, ethanol, and aqueous extracts of ten medicinal plants on β-lactamase from Staphylococcus sciuri and Klebsiella pneumoniae was investigated in vitro by starch-iodine agar plate method. The results revealed the success of starch-iodine method for the detection of the inhibition of β-lactamase activity by the various extracts of each individual plant. The acetone extracts of Catharanthus roseus, Eucalyptus camaldulensis, and Schinus terebinthifolius induced an inhibitory effect on β-lactamase from Staphylococcus sciuri. On the other hand, acetone extracts from only Eucalyptus camaldulensis, and Schinus
... Show More
Measurement of radon concentration level was carried out in 40 houses in Al – Najaf city during summer season of 2012. Long term measurement of indoor of old building radon concentrations have been taken, using a previously calibrated passive diffusion dosimeters containing CR – 39 solid state nuclear track detectors which are very sensitive for alpha particles. The measurement of the indoor radon concentration obtained in summer in these regions ranged from 11.654±4.216 Bq.m-3 to 53.610±8.777 Bq.m-3. The results were within universally permitted levels. |
Introduction to Medical and Biological Statistics for Pharmacy Students and Medical Groups (Undergraduate & Postgraduate) - ISBNiraq.org