Objective: The aim of this study was to develop a bioadhesive gel of gatifloxacin for the treatment of periodontal diseases.Methods: Periodontal gels of gatifloxacin were prepared using different hydrophilic polymers such as carbopol 940 (CP 940), carboxymethyl cellulose (CMC) and hydroxypropylmethyl cellulose (HPMC) in varied concentrations, either alone or as a combination. The prepared gels were evaluated for their physical appearance, pH, drug content, viscosity, bioadhesiveness and in vitro drug release profile. The influence of the type and the concentration of polymer on the drug release as well as on viscosity and mucoadhesiveness of prepared gels were investigated.Results: The prepared gels showed acceptable physical properties concerning color, homogeneity, consistency, spreadability, and pH value. Using different polymer types at different concentrations, as well as different polymer combinations, play a significant role in the variation of overall characteristics of formulations. Increasing the concentration of polymer increased the viscosity as well as mucoadhesion, and reduced drug release rate. Formulation F 11 (1 % CP 940 and 5 % CMC) was selected as the formula of choice based on the data of various evaluation parameters such as pH, drug content, viscosity, spreadability and bioadhesion as well as its ability to show a prolonged drug release pattern.Conclusion: The obtained results show that a bioadhesive periodontal gel of gatifloxacin can be prepared using hydrophilic polymers, and by using a combination of polymers the viscosity, mucoadhesiveness, spreadability and release behavior can be optimized.
Complexes of some metal ions with 2-thiotolylurea were prepared in ethanolic medium using (1:1) (Metal : Ligand) ratio yielded series of neutral complexes as the general formula [M(L)Cl2]. The prepared complexes were identified by atomic absorption FT.IR, UV-Visble spectra, molar conductivity and magnetic properties. From the above data the tetrahedral structure was suggested for all complexes.
Bromelain is a proteolytic enzyme rich in cysteine proteases, extracted from the stem and fruit of pineapple (Ananas comosus). There are several therapeutic applications of the bromelain enzyme, where it has anti-inflammatory, anti-cancer, and antimicrobial activity, reduces joint pain, and accelerates wound healing. In the current study, bromelain enzyme was loaded on silver nanoparticles (Br-AgNPs) prepared using the citrate-reduction Turkevich method. Different characterization analyses were performed, including UV-Vis spectrophotometers, FTIR, SEM, and XRD analyses. Moreover, the antioxidant activity of prepared Br-AgNPs was evaluated by DPPH assay. The results of UV-Vis showed a peak at 434 nm, which referred to the AgNPs f
... Show MoreNanocrystalline aluminophosphate AlPO4-5 molecular sieves were synthesized by hydrothermal method (HTS). Synthesis parameters like time and temperature of crystallization were investigated. Type of template (R) and ratio of R/P2O5 were studied also. Characterization of the synthesized AlPO4-5 were done by powder X-ray diffraction (XRD), scanning electron microscopy (SEM/EDX), Fourier transform infrared (FTIR), differential scanning calorimetry-thermogravimetry analysis (DSC-TGA), and N2 adsorption-desorption BET analysis. XRD patterns results showed excellent crystallinity for two types of templates, di-n-propylamine (DPA) and tetrapropyl ammonium hydroxide (TPAOH) f
... Show MoreThe synthesis of zeolite NaX from locally available kaolin has been studied. The operating conditions for zeolite NaX production from kaolin with good crystallinity were as follows; a gel formation step of metakaolin in alkaline medium in presence of additional silica to crystallize the zeolite was achieved at 60 oC for 1 hr,and with stirring. In ageing step of the reactants at room temperature for 5 days and crystallization step at 87±2 oC for 24 hr. The catalytic activity of catalyst prepared from local kaolin was studied by using cumene cracking as a model for catalytic cracking and compared with standard HY zeolite and HX zeolite catalysts. The activity test was carried out in a laboratory continuous flow unit with fixed bed reactor
... Show MoreMagnetic plaster kiln dust (MPKD) was synthesized as a unique, low-cost composite reused of byproduct plaster kiln dust (PKD), which is considered a source of air pollution. The FESEM, EDS, XRD, FTIR, VSM, and BET tests were used to characterize the MPKD. The characterization revealed that the MPKD was nanotubes non-agglomerated and super-paramagnetic with a high specific surface area (102.7 m2/g). Compared with the specific area of other materials (composites), the MPKD could be considered a promising substance in the field of water/wastewater treatment.
Carbon nanospheres (CNSs) were successfully prepared and synthesized by Catalytic Chemical Vapor Deposition (CCVD) by using camphor as carbon source only, over iron Cobalt (Fe-Co) saturated zeolite at temperature between (700 oC and 900 °C), with different concentrations of camphor, and reaction time. The synthesized CNSs were characterized using Scanning Electron Microscopy (SEM), X-ray diffraction spectroscopy (XRD), and Fourier Transform Infrared (FTIR). The carbon spheres in different sizes between 100 nm and 1000 nm were investigated. This work has done by two parts, first preparation of the metallic catalyst and second part formation CNSs by heat treatment.
Letrozole (LZL) is a non-steroidal competitive aromatase enzyme system inhibitor. The aim of this study is to improve the permeation of LZL through the skin by preparing as nanoemulsion using various numbers of oils, surfactants and co-surfactant with deionized water. Based on solubility studies, mixtures of oleic acid oil and tween 80/ transcutol p as surfactant/co-surfactant (Smix) in different percentages were used to prepare nanoemulsions (NS). Therefore, 9 formulae of (o/w) LZL NS were formulated, then pseudo-ternary phase diagram was used as a useful tool to evaluate the NS domain at Smix ratios: 1:1, 2:1 and 3:1.