الأثر V بالنسبة إلى sinshT و خواصه قد تم دراسته في هذا البحث حيث تم دراسة علاقة الأثر المخلص والاثر المنتهى التولد والاثر المنفصل وربطها بالمؤثرات المتباينة حيث تم بهنة العلاقات التالية ان الاثر اذا وفقط اذا مقاس في حالة كون المؤثر هو عديم القوة وكذلك في حالة كون المؤثر شامل فان الاثر هو منتهي التولد اي ان الغضاء هو منتهي التولد وايضا تم برهن ان الاثر مخلص لكل مؤثر مقيد وك\لك قد تم التحقق من انه لاي مؤثر مقيد فان الاثر منفصل وفي حالة كون الاثر منفصل فان المؤثر سوف يكون متباين وايضا تم برهنة انه في حالة كون الفضاء يمتلك قاعدة فان الاثر سوف يكون كل عنصر فيه يمكن كتابته كتركيبة خطية ومن العلاقات المهمة التي قد تم برهانها انه اذا كان المؤثر مشابه لمؤثر اخر فان الاثر سوف يكون نوثيرين بوجد شرط على الفضاء .
This paper investigates the concept (α, β) derivation on semiring and extend a few results of this map on prime semiring. We establish the commutativity of prime semiring and investigate when (α, β) derivation becomes zero.
The purpose of this paper is to find the best multiplier approximation of unbounded functions in –space by using some discrete linear positive operators. Also we will estimate the degree of the best multiplier approximation in term of modulus of continuity and the averaged modulus.
In 2010, Long and Zeng introduced a new generalization of the Bernstein polynomials that depends on a parameter and called -Bernstein polynomials. After that, in 2018, Lain and Zhou studied the uniform convergence for these -polynomials and obtained a Voronovaskaja-type asymptotic formula in ordinary approximation. This paper studies the convergence theorem and gives two Voronovaskaja-type asymptotic formulas of the sequence of -Bernstein polynomials in both ordinary and simultaneous approximations. For this purpose, we discuss the possibility of finding the recurrence relations of the -th order moment for these polynomials and evaluate the values of -Bernstein for the functions , is a non-negative integer
. Suppose that is the Cayley graph whose vertices are all elements of and two vertices and are adjacent if and only if . In this paper,we introduce the generalized Cayley graph denoted by which is a graph with a vertex set consisting of all column matrices in which all components are in and two vertices and are adjacent if and only if , where is a column matrix that each entry is the inverse of the similar entry of and is matrix with all entries in , is the transpose of and and m . We aim to provide some basic properties of the new graph and determine the structure of when is a complete graph for every , and n, m .
In this paper, we present a concept of nC- symmetric operator as follows: Let A be a bounded linear operator on separable complex Hilbert space , the operator A is said to be nC-symmetric if there exists a positive number n (n such that CAn = A*ⁿ C (An = C A*ⁿ C). We provide an example and study the basic properties of this class of operators. Finally, we attempt to describe the relation between nC-symmetric operator and some other operators such as Fredholm and self-adjoint operators.
In this paper we obtain some statistical approximation results for a general class of maxproduct operators including the paused linear positive operators.
In this paper, we introduce a class of operators on a Hilbert space namely quasi-posinormal operators that contain properly the classes of normal operator, hyponormal operators, M–hyponormal operators, dominant operators and posinormal operators . We study some basic properties of these operators .Also we are looking at the relationship between invertibility operator and quasi-posinormal operator .
Th goal of the pr s nt p p r is to obt in some differ tial sub rdin tion an sup r dination the rems for univalent functions related b differential operator Also, we discussed some sandwich-type results.
In this paper, we proved that if R is a prime ring, U be a nonzero Lie ideal of R , d be a nonzero (?,?)-derivation of R. Then if Ua?Z(R) (or aU?Z(R)) for a?R, then either or U is commutative Also, we assumed that Uis a ring to prove that: (i) If Ua?Z(R) (or aU?Z(R)) for a?R, then either a=0 or U is commutative. (ii) If ad(U)=0 (or d(U)a=0) for a?R, then either a=0 or U is commutative. (iii) If d is a homomorphism on U such that ad(U) ?Z(R)(or d(U)a?Z(R), then a=0 or U is commutative.