After baking the flour, azodicarbonamide, an approved food additive, can be converted into carcinogenic semicarbazide hydrochloride (SEM) and biurea in flour products. Thus, determine SEM in commercial bread products is become mandatory and need to be performed. Therefore, two accurate, precision, simple and economics colorimetric methods have been developed for the visual detection and quantitative determination of SEM in commercial flour products. The 1st method is based on the formation of a blue-coloured product with λmax at 690 nm as a result of a reaction between the SEM and potassium ferrocyanide in an acidic medium (pH 6.0). In the 2nd method, a brownish-green colored product is formed due to the reaction between the SEM and phosphomolybdic acid (PMA) in a basic medium (pH 9.0). The resulting product absorbs light at λmax 750 nm. The colorimetric methods can be used either as sensors to detect the SEM by bare eye observation as little as 10 ppm and 2.0 ppm within 4−2 min or by spectrophotometry as the determination methods with linearity ranges 8.0−180 ppm and 0.5−30 ppm for the 1st and 2nd methods respectively. The developed methods were successfully applied to determine the SEM in the commercial bread products with a relative standard deviation (RSD) <3 %, <2 % and recovery of 94–103 %, 96–101 % for methods (1st and 2nd) respectively. The visual detection limits of the sensors can be used as a platform for SEM field-portable detection due to their lower limitations than the reported SEM in flour products, which opens the doors for on-site detection of SEM with instrument free.
The impact of mental training overlap on the development of some closed and open skills in five-aside football for middle school students, Ayad Ali Hussein, Haidar Abedalameer Habe
A field experiment was conducted to grow the wheat crop during the fall season 2020 in Karbala province, north of Ain Al-Tamr District in two locations of different textures and parent materials. The first site (calcareous soil) with a sandy loam texture, is located at (44° 40′ 37′) east longitude and (32° 41′ 34′) north latitude, at an altitude of 32 m above sea level, and an area of 20 hectares. As for the second location (gypsum soil) with a loam texture, it is located at a longitude (45° 41′ 39′) east and a latitude (33° 43′ 34′ north) and at an altitude of 33 m above sea level and an area of 20 hectares. To find out the effect of different tillage systems on water productivity and wheat yield under center pivot irri
... Show MoreA new series of metal ions complexes of VO(II), Cr(III), Mn(II), Zn(II), Cd(II) and Ce(III) have been synthesized from the Schiff bases (4-chlorobenzylidene)-urea amine (L1) and (4-bromobenzylidene)-urea amine (L2). Structural features were obtained from their elemental microanalyses, magnetic susceptibility, molar conductance, FT-IR, UV–Vis, LC-Mass and 1HNMR spectral studies. The UV–Vis, magnetic susceptibility and molar conductance data of the complexes suggest a tetrahedral geometry around the central metal ion except, VOII complexes that has square pyramidal geometry, but CrIII and CeIII octahedral geometry. The biological activity for the ligand (L1) and its Vanadium and Cadmium complexes were studied. Structural geometries of com
... Show MoreThe current research aims to identify the effect of the Bransford and Stein model on the achievement of fifth-grade literary students for geography and their reflective thinking. To achieve the objective of the research, the following two null hypotheses were formulated:
- There is no statistically significant difference at the significance level (0.05) between the average scores of the experimental group students who studied geography using the Bransford and Stein model and the average scores of the control group students who studied the same subject in the usual way in the achievement test. 2- There is no statistically significant difference at the significance level (0.05) between the average scores of the experimental gr
The differential cross section for the Rhodium and Tantalum has been calculated by using the Cross Section Calculations (CSC) in range of energy(1keV-1MeV) . This calculations based on the programming of the Klein-Nashina and Rayleigh Equations. Atomic form factors as well as the coherent functions in Fortran90 language Machine proved very fast an accurate results and the possibility of application of such model to obtain the total coefficient for any elements or compounds.
In this paper, some necessary and sufficient conditions are obtained to ensure the oscillatory of all solutions of the first order impulsive neutral differential equations. Also, some results in the references have been improved and generalized. New lemmas are established to demonstrate the oscillation property. Special impulsive conditions associated with neutral differential equation are submitted. Some examples are given to illustrate the obtained results.