The use of external posttensioning technique for strengthening reinforced concrete girders has been considerably studied by many researchers worldwide. However, no available data are seen regarding strengthening full-scale composite prestressed concrete girders with external posttensioned technique under static and repeated loading. In this research, four full-scale composite prestressed I-shape girders of 16 m span were fabricated and tested under static and repeated loading up to failure. Accordingly, two girders were externally strengthened with posttensioned strands, while the other two girders were left without strengthening. The experimental tests include deflection, cracking load, ultimate strength and strains at midspan, and loading stages. Test results were compared with the design expressions mentioned in AASHTO LRFD specifications and ACI 318-2014 code. Also, a nonlinear analysis was conducted using the finite element method (FEM). The presented analysis models were verified by comparing the model results with test results. The general theme abstracted from both experimental tests and numerical analysis reflects that the performance and procedure of strengthening with external prestressing of girders were found to be effective in increasing the load carrying capacity of the strengthened girders.
Reinforcing asphalt concrete with polyester fibers considered as an active remedy to alleviate the harmful impact of fatigue deterioration. This study covers the investigation of utilizing two shapes of fibers size, 6.35 mm by 3.00 mm and 12.70 mm by 3.00 mm with mutual concentrations equal to 0.25 %, 0.50 % and 0.75 % by weight of mixture. Composition of asphalt mixture consists of different optimum (40-50) asphalt cement content, 12.50 mm nominal aggregate maximum size with limestone dust as a filler. Following the traditional asphalt cement and aggregate tests, three essential test were carried out on mixtures, namely: Marshall test (105 cylindrical specimens), indirect tensile strength test (21 cylindrical specimens)
... Show MoreResearch aims to develop a novel technique for segmental beam fabrication using plain concrete blocks and externally bonded Carbon Fiber Reinforced Polymers Laminates (CFRP) as a main flexural reinforcement. Six beams designed an experimentally tested under two-point loadings. Several parameters included in the fabrication of segmental beam studied such as; bonding length of carbon fiber reinforced polymers, the surface-to-surface condition of concrete segments, interface condition of the bonding surface, and thickness of epoxy resin layers. Test results of the segmental beams specimens compared with that gained from testing reinforced concrete beam have similar dimensions for validations. The results show the effectiven
... Show MoreThe introduction of concrete damage plasticity material models has significantly improved the accuracy with which the concrete structural elements can be predicted in terms of their structural response. Research into this method's accuracy in analyzing complex concrete forms has been limited. A damage model combined with a plasticity model, based on continuum damage mechanics, is recommended for effectively predicting and simulating concrete behaviour. The damage parameters, such as compressive and tensile damages, can be defined to simulate concrete behavior in a damaged-plasticity model accurately. This research aims to propose an analytical model for assessing concrete compressive damage based on stiffness deterioration. The prop
... Show MoreTo accommodate utilities in buildings, different sizes of openings are provided in the web of reinforced concrete deep beams, which cause reductions in the beam strength and stiffness. This paper aims to investigate experimentally and numerically the effectiveness of using carbon fiber reinforced polymer (CFRP) strips, as a strengthening technique, to externally strengthen reinforced concrete continuous deep beams (RCCDBs) with large openings. The experimental work included testing three RCCDBs under five-point bending. A reference specimen was prepared without openings to explore the reductions in strength and stiffness after providing large openings. Openings were created symmetrically at the center of spans of the other specimens
... Show MoreNon-prismatic reinforced concrete (RC) beams are widely used for various practical purposes, including enhancing architectural aesthetics and increasing the overall thickness in the support area above the column, which gives high assurance to services that this will not result in the distortion of construction features and can reduce heights. The hollow sections (recess) can also be used for the maintenance of large structural sections and the safe passage of utility lines of water, gas, telecommunications, electricity, etc. They are generally used in large and complex civil engineering works like bridges. This study conducted a numerical study using the commercial finite element software ANSYS version 15 for analysing RC beams, hol
... Show Moreunacceptable social behaviors, particularly withdrawal behavior that appears in children with autism represent a major problem hindering the process of communication with those around them and therefore the process of mergence with them be difficult.
The withdrawal causes a real affect deficit for children with autism limits the possibility of development of their intellectual and mental growth due to their solitude and the weakness of their focus in the acquisition of pedagogical skills and lack the necessary social skills to maintain the relations of friendship and enjoyment of them.
withdrawal children fail to participate
... Show MoreIn this paper the reinforced materials manufactured from steel continues fibers are used in Aluminum matrix to build a composite material. Most of researches concentrated on reinforced materials and its position in the matrix according to its size and distribution, and their effects on the magnitude of different kinds of the stresses, so this paper presents and concentrate on the geometrical shape of reinforced material and its effects on the internal stresses and strains on the composite strength using FEM as a method for analysis after loaded by certain force showing the deference magnitudes of stresses according to the different geometrical shapes of reinforced materials.
Slurry-infiltrated fibrous concrete (SIFCON) is a special type of concrete that has great strength, as well as high ductility. However, the unit weight is high, which exceeds the unit weight of fiber-reinforced concrete, because of the high fiber content. This research aims to verify the compressive and flexural strength, as well as the density of SIFCON when using two different fibers (steel and polyolefin). Sometimes mono type of fiber steel or polyolefin, sometimes by hybridizing two types of fiber steel + polyplefin. Volume fraction (6% for all species) was used. Hook-end steel fiber and polyolefin fiber are used. With hybridization, a total volume fraction of 6% was used, which