Preferred Language
Articles
/
joe-479
Reinforcement of Asphalt Concrete by Polyester Fibers to Improve Flexural Bending Fatigue Resistance

Reinforcing asphalt concrete with polyester fibers considered as an active remedy to alleviate the harmful impact of fatigue deterioration. This study covers the investigation of utilizing two shapes of fibers size, 6.35 mm by 3.00 mm and 12.70 mm by 3.00 mm with mutual concentrations equal to 0.25 %, 0.50 % and 0.75 % by weight of mixture. Composition of asphalt mixture consists of different optimum (40-50) asphalt cement content, 12.50 mm nominal aggregate maximum size with limestone dust as a filler. Following the traditional asphalt cement and aggregate tests, three essential test were carried out on mixtures, namely: Marshall test (105 cylindrical specimens), indirect tensile strength test (21 cylindrical specimens) and flexural bending test (21 beam specimens). The results revealed that, more asphalt content needed as the fibers length and concentration increased. The fatigue life estimation depending on cyclic load to failure in the beam test support the idea that polyester fibers really improve the resistance of fatigue cracking since the repetitions to failure increased by 9.40 % for the 0.50 % of 12.70 mm fibers length. Both of Marshall stability and indirect tensile strength suffer from slight reduction in their values, whereas, the 0.75 % of 12.70 mm fibers length caused lowering in Marshall stability and indirect tensile strength by 11.70 % and 6.00 % respectively.

 

View Publication
Publication Date
Fri Jan 01 2021
Journal Name
Materials Today: Proceedings Journal
Scopus (4)
Crossref (4)
Scopus Clarivate Crossref
Publication Date
Mon Feb 01 2016
Journal Name
Journal Of Engineering
Fatigue Behavior of Modified Asphalt Concrete Pavement

Fatigue cracking is the most common distress in road pavement. It is mainly due to the increase in the number of load repetition of vehicles, particularly those with high axle loads, and to the environmental conditions. In this study, four-point bending beam fatigue testing has been used for control and modified mixture under various micro strain levels of (250 μƐ, 400 μƐ, and 750 μƐ) and 5HZ. The main objective of the study is to provide a comparative evaluation of pavement resistance to the phenomenon of fatigue cracking between modified asphalt concrete and conventional asphalt concrete mixes (under the influence of three percentage of Silica fumes 1%, 2%, 3% by the weight of asphalt content), and (chan

... Show More
View Publication Preview PDF
Publication Date
Fri May 01 2015
Journal Name
Journal Of Engineering
Resistance to Moisture Damage of Recycled Asphalt Concrete Pavement

Recycled asphalt concrete mixture are prepared, artificially aged and processed in the laboratory to maintain the homogeneity of recycled asphalt concrete mixture gradation, and bitumen content. The loose asphalt concrete mix was subjected to cycle of accelerated aging, (short –term aging) and the compacted mix was subjected to (long -term aging) as per Super-pave procedure. Twenty four Specimens were constructed at optimum asphalt content according to Marshall Method. Recycled mixture was prepared from aged asphalt concrete using recycling agent (soft asphalt cement blended with silica fumes) by (1.5%) weight of mixture as recycling agent content. The effect of recycling agent on aging after recycling process behavior

... Show More
View Publication Preview PDF
Publication Date
Sun Jun 01 2014
Journal Name
Baghdad Science Journal
Study of Fatigue and Bending Properties For Epoxy / Kevlar - Glass Fibers and Hybrid Composite

In this research a study of the effect of quality, sequential and directional layers for three types of fibers are:(Kevlar fibers-49 woven roving and E- glass fiber woven roving and random) on the fatigue property using epoxy as matrix. The test specimens were prepared by hand lay-up method the epoxy resin used as a matrix type (Quick mast 105) in prepared material composit . Sinusoidal wave which is formed of variable stress amplitudes at 15 Hz cycles was employed in the fatigue test ( 10 mm )and (15mm) value 0f deflection arrival to numbers of cycle failure limit, by rotary bending method by ( S-N) curves this curves has been determined ( life , limit and fa

... Show More
Crossref
View Publication Preview PDF
Publication Date
Tue Sep 24 2019
Journal Name
Journal Of Engineering
Flexural Performance of Laced Reinforced Concrete Beams under Static and Fatigue Loads

This paper introduces experimental results of eighteen simply supported reinforced concrete beams of cross sections ( ) and length 3000 mm to study the effect of lacing reinforcement on the performance of such beams under static and fatigue loads. Twelve reinforced concrete beams (two of them are casted with vertical shear reinforcement used as control beams) are tested under four points bending loading with displacement control technique and six laced reinforced concrete beams were exposed to high frequency (10 Hz) by fixing the fatigue load in each cycle. Three parameters are used in the designed beams, which are: lacing bar diameter (4mm, 6mm, and 8mm), lacing bar inclination angle to horizontal , and lacing steel rat

... Show More
Crossref (1)
Crossref
View Publication Preview PDF
Publication Date
Sun Jan 01 2017
Journal Name
Journal Of Engineering
Evaluating Water Damage Resistance of Recycled Asphalt Concrete Mixtures

Recycling process presents a sustainable pavement by using the old materials that could be milled, mixed with virgin materials and recycling agents to produce recycled mixtures. The objective of this study is to evaluate the impact of water on recycled asphalt concrete mixtures, and the effect of the inclusion of old materials into recycled mixtures on the resistance of water damage. A total of 54 Marshall Specimens and 54 compressive strength specimens of (virgin, recycled, and aged asphalt concrete mixtures) had been prepared, and subjected to Tensile Strength Ratio test, and Index of Retained Strength test. Four types of recycling agents (used oil, oil + crumb rubber, soft grade asphalt cement, and asphalt cement + Su

... Show More
View Publication Preview PDF
Publication Date
Sun Jun 11 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Evaluation of Mechanical Strength of Epoxy Polymer Concrete Reinforcement with Different Types of Fibers

 Polymer composite materials were prepared by mixing epoxy resin with sand particles in three different grain size (150-300 ), (300-600 ) and (600- 1200) μm . The weight of epoxy was 15%, 20%, 25% and 30% of the total weight. Compression  strength and flexural strength tests were carried out for the prepared samples .The percentages of epoxy resin at 20% wt and 25% wt showed best mechanical properties for all grain sizes .These percentages were adopted to fill the void between particles sand which have two different size ranges (150-600) μm and {(150-300) & (600-1200)} μm respectively to obtain more dense material. The results showed that the strength of polymer composite at 20% resin is higher than 25% resin. The

... Show More
Crossref (1)
Crossref
View Publication Preview PDF
Publication Date
Fri Nov 30 2018
Journal Name
Iop Conference Series: Materials Science And Engineering
View Publication
Publication Date
Tue Dec 10 2019
Journal Name
Journal Of Engineering And Applied Sciences
Rutting Resistance Potential of High Modulus Asphalt Concrete Pavements

The High Modulus Asphalt Concrete Mixture (HMACM) or (EME) (Enrobes a Module Eleve) developed in France, since, 1980 by Laboratories Central des Ponts et Chaussees (LCPC). Due to the increasing in traffic intensity and axle loading this type of mixing were suitable for pavement subjected to heavy duty. Experiments showed that EME mixtures have an excellent moisture damage resistance permanent deformation, fatigue cracking and reducing costs of maintenance and a significant reduction in thickness of pavement. Because of the high stiffness of EME mixes, the stresses transformed to the bottom laid layer by repeated traffic wheel loads were reduced effectively. This study intend to focus the light into the possibility of producing asphalt mixtu

... Show More
Crossref
Publication Date
Sun Sep 01 2019
Journal Name
Civil Engineering Journal
Effect of PolyPhosphoric Acid on Rutting Resistance of Asphalt Concrete Mixture

The action of high repeated trucks load associated with dramatically elevated ambient temperatures leads to the most harmful distress in asphalt pavements occurred in Iraq known as rutting. Essentially, it is produced from the accumulation of irrecoverable strains, which mainly occurred in the asphalt layers. That visually demonstrated as a longitudinal depression in the wheel paths as well as small upheavals to the sides. Poly Phosphoric Acid (PPA) has been used as a means of producing modified asphalt binders and the interest to use it has increased in recent years. The PPA provides modified asphalt binder, which is relatively cheaply produced compared to polymer-modified asphalt. In this paper, PPA was used by three-percentages 1

... Show More
Crossref (2)
Crossref