This study proposes a hybrid predictive maintenance framework that integrates the Kolmogorov-Arnold Network (KAN) with Short-Time Fourier Transform (STFT) for intelligent fault diagnosis in industrial rotating machinery. The method is designed to address challenges posed by non-linear and non-stationary vibration signals under varying operational conditions. Experimental validation using the FALEX multispecimen test bench demonstrated a high classification accuracy of 97.5%, outperforming traditional models such as SVM, Random Forest, and XGBoost. The approach maintained robust performance across dynamic load scenarios and noisy environments, with precision and recall exceeding 95%. Key contributions include a hardware-accelerated K
... Show MoreThis paper aims to propose a hybrid approach of two powerful methods, namely the differential transform and finite difference methods, to obtain the solution of the coupled Whitham-Broer-Kaup-Like equations which arises in shallow-water wave theory. The capability of the method to such problems is verified by taking different parameters and initial conditions. The numerical simulations are depicted in 2D and 3D graphs. It is shown that the used approach returns accurate solutions for this type of problems in comparison with the analytic ones.
In this study, the modified size-strain plot (SSP) method was used to analyze the x-ray diffraction lines pattern of diffraction lines (1 0 1), (1 2 1), (2 0 2), (0 4 2), (2 4 2) for the calcium titanate(CaTiO3) nanoparticles, and to calculate lattice strain, crystallite size, stress, and energy density, using three models: uniform (USDM). With a lattice strain of (2.147201889), a stress of (0.267452615X10), and an energy density of (2.900651X10-3 KJ/m3), the crystallite was 32.29477611 nm in size, and to calculate lattice strain of Scherrer (4.1644598X10−3), and (1.509066023X10−6 KJ/m3), a stress of(6.403949183X10−4MPa) and (26.019894 nm).
Astronomers have known since the invention of the telescope that atmospheric turbulence affects celestial images. So, in order to compensate for the atmospheric aberrations of the observed wavefront, an Adaptive Optics (AO) system has been introduced. The AO can be arranged into two systems: closedloop and open-loop systems. The aim of this paper is to model and compare the performance of both AO loop systems by using one of the most recent Adaptive Optics simulation tools, the Objected-Oriented Matlab Adaptive Optics (OOMAO). Then assess the performance of closed and open loop systems by their capabilities to compensate for wavefront aberrations and improve image quality, also their effect by the observed optical bands (near-infrared band
... Show MoreUsing the Neural network as a type of associative memory will be introduced in this paper through the problem of mobile position estimation where mobile estimate its location depending on the signal strength reach to it from several around base stations where the neural network can be implemented inside the mobile. Traditional methods of time of arrival (TOA) and received signal strength (RSS) are used and compared with two analytical methods, optimal positioning method and average positioning method. The data that are used for training are ideal since they can be obtained based on geometry of CDMA cell topology. The test of the two methods TOA and RSS take many cases through a nonlinear path that MS can move through tha
... Show MoreToday, the science of artificial intelligence has become one of the most important sciences in creating intelligent computer programs that simulate the human mind. The goal of artificial intelligence in the medical field is to assist doctors and health care workers in diagnosing diseases and clinical treatment, reducing the rate of medical error, and saving lives of citizens. The main and widely used technologies are expert systems, machine learning and big data. In the article, a brief overview of the three mentioned techniques will be provided to make it easier for readers to understand these techniques and their importance.
Using the Neural network as a type of associative memory will be introduced in this paper through the problem of mobile position estimation where mobile estimate its location depending on the signal strength reach to it from several around base stations where the neural network can be implemented inside the mobile. Traditional methods of time of arrival (TOA) and received signal strength (RSS) are used and compared with two analytical methods, optimal positioning method and average positioning method. The data that are used for training are ideal since they can be obtained based on geometry of CDMA cell topology. The test of the two methods TOA and RSS take many cases through a nonlinear path that MS can move through that region. The result
... Show MoreMassive multiple-input multiple-output (m-MIMO) is considered as an essential technique to meet the high data rate requirements of future sixth generation (6G) wireless communications networks. The vast majority of m-MIMO research has assumed that the channels are uncorrelated. However, this assumption seems highly idealistic. Therefore, this study investigates the m-MIMO performance when the channels are correlated and the base station employs different antenna array topologies, namely the uniform linear array (ULA) and uniform rectangular array (URA). In addition, this study develops analyses of the mean square error (MSE) and the regularized zero-forcing (RZF) precoder under imperfect channel state information (CSI) and a realist
... Show More
