In this paper, we introduce and study the concepts of hollow – J–lifting modules and FI – hollow – J–lifting modules as a proper generalization of both hollow–lifting and J–lifting modules . We call an R–module M as hollow – J – lifting if for every submodule N of M with is hollow, there exists a submodule K of M such that M = K Ḱ and K N in M . Several characterizations and properties of hollow –J–lifting modules are obtained . Modules related to hollow – J–lifting modules are given .
The main goal of this paper is introducing and studying a new concept, which is named H-essential submodules, and we use it to construct another concept called Homessential modules. Several fundamental properties of these concepts are investigated, and other characterizations for each one of them is given. Moreover, many relationships of Homessential modules with other related concepts are studied such as Quasi-Dedekind, Uniform, Prime and Extending modules.
In this paper we study the concepts of δ-small M-projective module and δ-small M-pseudo projective Modules as a generalization of M-projective module and M-Pseudo Projective respectively and give some results.
In this work we study gamma modules which are implying full stability or implying by full stability. A gamma module is fully stable if for each gamma submodule of and each homomorphism of into . Many properties and characterizations of these classes of gamma modules are considered. We extend some results from the module to the gamma module theories.
In this paper, we introduce the concept of s.p-semisimple module. Let S be a semiradical property, we say that a module M is s.p - semisimple if for every submodule N of M, there exists a direct summand K of M such that K ≤ N and N / K has S. we prove that a module M is s.p - semisimple module if and only if for every submodule A of M, there exists a direct summand B of M such that A = B + C and C has S. Also, we prove that for a module M is s.p - semisimple if and only if for every submodule A of M, there exists an idempotent e ∊ End(M) such that e(M) ≤ A and (1- e)(A) has S.
Abstract In this work we introduce the concept of approximately regular ring as generalizations of regular ring, and the sense of a Z- approximately regular module as generalizations of Z- regular module. We give many result about this concept.
Abstract
In order to determine what type of photovoltaic solar module could best be used in a thermoelectric photovoltaic power generation. Changing in powers due to higher temperatures (25oC, 35oC, and 45oC) have been done for three types of solar modules: monocrystalline , polycrystalline, and copper indium gallium (di) selenide (CIGS). The Prova 200 solar panel analyzer is used for the professional testing of three solar modules at different ambient temperatures; 25oC, 35oC, and 45oC and solar radiation range 100-1000 W/m2. Copper indium gallium (di) selenide module has the lowest power drop (with the average percent
... Show MoreLet
be an
module, and let
be a set, let
be a soft set over
. Then
is said to be a fuzzy soft module over
iff
,
is a fuzzy submodule of
. In this paper, we introduce the concept of fuzzy soft modules over fuzzy soft rings and some of its properties and we define the concepts of quotient module, product and coproduct operations in the category of
modules.
The concept of St-Polyform modules, was introduced and studied by Ahmed in [1], where a module M is called St-polyform, if for every submodule N of M and for any homomorphism ð‘“:N M; kerð‘“ is St-closed submodule in N. The novelty of this paper is to dualize this class of modules, the authors call it CSt-polyform modules, and according to this dualizations, some results which appeared in [1] are dualized for example we prove that in the class of hollow modules, every CSt-polyform module is coquasi-Dedekind. In addition, several important properties of CSt-polyform module are established, and other characterization of CSt-polyform is given. Moreover, many relationships of CSt-polyform modules with other related concepts are
... Show MoreLet R be a Γ-ring and G be an RΓ-module. A proper RΓ-submodule S of G is said to be semiprime RΓ-submodule if for any ideal I of a Γ-ring R and for any RΓ-submodule A of G such that or which implies that . The purpose of this paper is to introduce interesting results of semiprime RΓ-submodule of RΓ-module which represents a generalization of semiprime submodules.