Nowadays nanoparticles have widespread application in various industriesbecause of their special and unique features, there are many studies in sideeffects of nanomaterial. This study done by 40 white female mice withevery other day intraperitoneally injection of low and high doses of both ofZnO kg of body weight) and FeOnanoparticles (5 and 40 mg/kg). After a 15 days period, the mice weresacrificed and blood samples were collected for hormone analysis, andtissue samples for morphometric studies.Statistical Analysis shows significant differences in LH, Estrogen,Progesterone hormone levels between groups, while there are insignificantdifferences in Follicle stimulating hormone (FSH) level between thegroups compared with its level in the control group.The results also show that the highest level of LH reach 7.2 mIU/ml in thegroups treated with low dose of zinc oxide, the highest level of FSH reach4.58 mIU/ml in the groups treated with low dose of zinc oxide, the highestlevel of Estrogen hormone reach 69.5 ng/ml in the groups treated with lowof dose zinc oxide and the highest level of Progesterone reach 1.9 ng/ml inthe groups treated with high dose iron oxide. We conclude from the resultsthat the low doses of ZnO has benefits in increasing fertility through highlevel of reproductive hormones, while the high levels of nanoparticlesreduce fertility and there is a relation between FeO nanoparticles andprogesterone levels which may need more future studies.Morphometric study of the ovary show increase in Follicular stagesnumber range in the group treated with Low dose ZnO in compare with itsrange in the control groups. The lower range was belong to the grouptreated with the high dose of FeO. No significant differences has beenfound in the diameter mean of the different follicular phases between thegroup treated with low dose of ZnO NPs in compared with the controlgroup. High dose of ZnO NPs cause significant increase in the diametermean of Primordial follicles in compared with the control group. Low andhigh dose FeO NPs treated groups show significant reduction in thediameter mean of the different follicular phases in compared with thecontrol group.
The main purpose of this work is to introduce some types of fuzzy convergence sequences of operators defined on a standard fuzzy normed space (SFN-spaces) and investigate some properties and relationships between these concepts. Firstly, the definition of weak fuzzy convergence sequence in terms of fuzzy bounded linear functional is given. Then the notions of weakly and strongly fuzzy convergence sequences of operators are introduced and essential theorems related to these concepts are proved. In particular, if ( ) is a strongly fuzzy convergent sequence with a limit where linear operator from complete standard fuzzy normed space into a standard fuzzy normed space then belongs to the set of all fuzzy bounded linear operators
In the field of data security, the critical challenge of preserving sensitive information during its transmission through public channels takes centre stage. Steganography, a method employed to conceal data within various carrier objects such as text, can be proposed to address these security challenges. Text, owing to its extensive usage and constrained bandwidth, stands out as an optimal medium for this purpose. Despite the richness of the Arabic language in its linguistic features, only a small number of studies have explored Arabic text steganography. Arabic text, characterized by its distinctive script and linguistic features, has gained notable attention as a promising domain for steganographic ventures. Arabic text steganography harn
... Show MoreThis work implements an Electroencephalogram (EEG) signal classifier. The implemented method uses Orthogonal Polynomials (OP) to convert the EEG signal samples to moments. A Sparse Filter (SF) reduces the number of converted moments to increase the classification accuracy. A Support Vector Machine (SVM) is used to classify the reduced moments between two classes. The proposed method’s performance is tested and compared with two methods by using two datasets. The datasets are divided into 80% for training and 20% for testing, with 5 -fold used for cross-validation. The results show that this method overcomes the accuracy of other methods. The proposed method’s best accuracy is 95.6% and 99.5%, respectively. Finally, from the results, it
... Show MoreThe fingerprints are the more utilized biometric feature for person identification and verification. The fingerprint is easy to understand compare to another existing biometric type such as voice, face. It is capable to create a very high recognition rate for human recognition. In this paper the geometric rotation transform is applied on fingerprint image to obtain a new level of features to represent the finger characteristics and to use for personal identification; the local features are used for their ability to reflect the statistical behavior of fingerprint variation at fingerprint image. The proposed fingerprint system contains three main stages, they are: (i) preprocessing, (ii) feature extraction, and (iii) matching. The preprocessi
... Show MoreThe aim of this study is to shed light on the importance of biofuels as an alternative to conventional energy, in addition to the importance of preserving agricultural crops, which are the main source of this fuel, to maintain food security, especially in developing countries. The increase in global oil prices, in addition to the fear of global warming, are among the main factors that draw the world’s attention to searching for alternative sources of traditional energy, which are sustainable on the one hand, and on the other hand reduce carbon emissions. Therefore, the volume of global investment in renewable energy in general, and in liquid biofuels and biomass in particular, has increased. Global fears emerged that the excessive
... Show MoreIn this paper, a handwritten digit classification system is proposed based on the Discrete Wavelet Transform and Spike Neural Network. The system consists of three stages. The first stage is for preprocessing the data and the second stage is for feature extraction, which is based on Discrete Wavelet Transform (DWT). The third stage is for classification and is based on a Spiking Neural Network (SNN). To evaluate the system, two standard databases are used: the MADBase database and the MNIST database. The proposed system achieved a high classification accuracy rate with 99.1% for the MADBase database and 99.9% for the MNIST database
The main aim of this paper is to explain the effect of the aggregation accounting information on the financial, investment, and operational, managerial decision-making and the evaluation of the financial statements after aggregate. The problem of this study is represented in administrative decision-making that takes place under differentiated accounting systems operating within a governmental economic unit that seeks at the same time to achieve a unified vision and goals for the organization. This study was conducted at the College of Administration and Economics /University of Baghdad, and it represents a sample from a community of governmental economic units that apply differentiated accounting systems. The study method is repr
... Show MoreFinding a new source of resistance is important to reduce the use of synthetic pesticides, which can meet the global need of suppressing pollution. In this study, the resistance of eight eggplant cultivars to Aphis gossypii was evaluated. Results of the current study highlighted that the cultivar Long-Green has a very strong resistance after 14 days post infestation whereas Pearl-Round and White-Casper cultivars were susceptible. The rest of the tested cultivars (Green-oblong, Purple-panter, Paris, Ashbilia, and Barcelona) had mild resistance. Also, the study found significant differences between the infested and non-infested plants among the tested cultivars in the plant’s height, fresh-, and dry-weight. The susceptible cultivars
... Show MoreThis study investigates the feasibility of a mobile robot navigating and discovering its location in unknown environments, followed by the creation of maps of these navigated environments for future use. First, a real mobile robot named TurtleBot3 Burger was used to achieve the simultaneous localization and mapping (SLAM) technique for a complex environment with 12 obstacles of different sizes based on the Rviz library, which is built on the robot operating system (ROS) booted in Linux. It is possible to control the robot and perform this process remotely by using an Amazon Elastic Compute Cloud (Amazon EC2) instance service. Then, the map to the Amazon Simple Storage Service (Amazon S3) cloud was uploaded. This provides a database
... Show More