Text Clustering consists of grouping objects of similar categories. The initial centroids influence operation of the system with the potential to become trapped in local optima. The second issue pertains to the impact of a huge number of features on the determination of optimal initial centroids. The problem of dimensionality may be reduced by feature selection. Therefore, Wind Driven Optimization (WDO) was employed as Feature Selection to reduce the unimportant words from the text. In addition, the current study has integrated a novel clustering optimization technique called the WDO (Wasp Swarm Optimization) to effectively determine the most suitable initial centroids. The result showed the new meta-heuristic which is WDO was employed as the multi-objective first time as unsupervised Feature Selection (WDOFS) and the second time as a Clustering algorithm (WDOC). For example, the WDOC outperformed Harmony Search and Particle Swarm in terms of F-measurement by 93.3%; in contrast, text clustering's performance improves 0.9% because of using suggested clustering on the proposed feature selection. With WDOFS more than 50 percent of features have been removed from the other examination of features. The best result got the multi-objectives with F-measurement 98.3%.
The necessities of steganography methods for hiding secret message into images have been ascend. Thereby, this study is to generate a practical steganography procedure to hide text into image. This operation allows the user to provide the system with both text and cover image, and to find a resulting image that comprises the hidden text inside. The suggested technique is to hide a text inside the header formats of a digital image. Least Significant Bit (LSB) method to hide the message or text, in order to keep the features and characteristics of the original image are used. A new method is applied via using the whole image (header formats) to hide the image. From the experimental results, suggested technique that gives a higher embe
... Show MoreIn this study, multi-objective optimization of nanofluid aluminum oxide in a mixture of water and ethylene glycol (40:60) is studied. In order to reduce viscosity and increase thermal conductivity of nanofluids, NSGA-II algorithm is used to alter the temperature and volume fraction of nanoparticles. Neural network modeling of experimental data is used to obtain the values of viscosity and thermal conductivity on temperature and volume fraction of nanoparticles. In order to evaluate the optimization objective functions, neural network optimization is connected to NSGA-II algorithm and at any time assessment of the fitness function, the neural network model is called. Finally, Pareto Front and the corresponding optimum points are provided and
... Show MoreMulti-point forming (MPF) is an advanced flexible manufacture technology, and the technology results from the idea that the whole die is separated into small punches that can be adjusted height. This idea is applied to the traditional rigid blank-holder, so flexible blank-holder (FBH) idea can be obtained. In this work, the performance of a multi-point die is investigated with pins in square matrix and suitable blank holder. Each pin in the punch holder can be a significant moved according to the die high and at different load that applied with spring with respect to spring stiffness. The results shows the reduction in setting time with respect to traditional single point incremental forming process that lead to (90%). and also show duri
... Show MoreThis paper presents a meta-heuristic swarm based optimization technique for solving robot path planning. The natural activities of actual ants inspire which named Ant Colony Optimization. (ACO) has been proposed in this work to find the shortest and safest path for a mobile robot in different static environments with different complexities. A nonzero size for the mobile robot has been considered in the project by taking a tolerance around the obstacle to account for the actual size of the mobile robot. A new concept was added to standard Ant Colony Optimization (ACO) for further modifications. Simulations results, which carried out using MATLAB 2015(a) environment, prove that the suggested algorithm outperforms the standard version of AC
... Show MoreThe effects of nutrients and physical conditions on phytase production were investigated with a recently isolated strain of Aspergillus tubingensis SKA under solid state fermentation on wheat bran. The nutrient factors investigated included carbon source, nitrogen source, phosphate source and concentration, metal ions (salts) and the physical parameters investigated included inoculum size, pH, temperature and fermentation duration. Our investigations revealed that optimal productivity of phytase was achieved using wheat bran supplemented with: 1.5% glucose. 0.5% (NH4)2SO4, 0.1% sodium phytate. Additionally, optimal physical conditions were 1 × 105 spore/g substrate, initial pH of 5.0, temperature of fermentation 30˚C and fermentation dura
... Show MoreIn this paper a hybrid system was designed for securing transformed or stored text messages(Arabic and english) by embedding the message in a colored image as a cover file depending on LSB (Least Significant Bit) algorithm in a dispersed way and employing Hill data encryption algorithm for encrypt message before being hidden, A key of 3x3 was used for encryption with inverse for decryption, The system scores a good result for PSNR rate ( 75-86) that differentiates according to length of message and image resolution
In this paper a hybrid system was designed for securing transformed or stored text messages(Arabic and english) by embedding the message in a colored image as a cover file depending on LSB (Least Significant Bit) algorithm in a dispersed way and employing Hill data encryption algorithm for encrypt message before being hidden, A key of 3x3 was used for encryption with inverse for decryption, The system scores a good result for PSNR rate ( 75-86) that differentiates according to length of message and image resolution.
The biometric-based keys generation represents the utilization of the extracted features from the human anatomical (physiological) traits like a fingerprint, retina, etc. or behavioral traits like a signature. The retina biometric has inherent robustness, therefore, it is capable of generating random keys with a higher security level compared to the other biometric traits. In this paper, an effective system to generate secure, robust and unique random keys based on retina features has been proposed for cryptographic applications. The retina features are extracted by using the algorithm of glowworm swarm optimization (GSO) that provides promising results through the experiments using the standard retina databases. Additionally, in order t
... Show More