The main aim of this study is to evaluate the remaining oil in previously produced zones, locate the water productive zone and look for any bypassed oil behind casing in not previously perforated intervals. Initial water saturation was calculated from digitized open hole logs using a cut-off value of 10% for irreducible water saturation. The integrated analysis of the thermal capture cross section, Sigma and Carbon/oxygen ratio was conducted and summarized under well shut-in and flowing conditions. The logging pass zone run through sandstone Zubair formation at north Rumaila oil field. The zones where both the Sigma and the C/O analysis show high remaining oil saturation similar to the open hole oil saturation, could be good oil zones that do not appear to be water flooded. The zones where the Sigma analysisshows high residual oil saturation, which is close to open hole oil saturation and the C/O analysis, show medium residual oil saturation; this could indicate that these zones were fresh water flooded to a certain extent and they still keep some residual oil. If the C/O analysis shows low residual oil saturation, it indicates that these zones were probably fresh water flooded thoroughly. If both Sigma analysis and the C/O analysis show medium residual oil saturation, most probably these zones were saline water flooded to a certain extent and they still keep some residual oil.
Cladophora and Spirulina algae biomass have been used for the removal of Tetracycline (TC) antibiotic from aqueous solution. Different operation conditions were varied in batch process, such as initial antibiotic concentration, different biomass dosage and type, contact time, agitation speed, and initial pH. The result showed that the maximum removal efficiencies by using 1.25 g/100 ml Cladophora and 0.5 g/100 ml Spirulina algae biomass were 95% and 94% respectively. At the optimum experimental condition of temperature 25°C, initial TC concentration 50 mg/l, contact time 2.5hr, agitation speed 200 rpm and pH 6.5. The characterization of Cladophora and Spirulina biomass by Fourier transform infrared (FTIR) indicates that the presenc
... Show MoreThe increased use of hybrid PET /CT scanners combining detailed anatomical information along withfunctional data has benefits for both diagnostic and therapeutic purposes. This presented study is to makecomparison of cross sections to produce 18F , 82Sr and68Ge via different reactions with particle incident energy up to 60 MeV as a part of systematic studies on particle-induced activations on enriched natNe, natRb, natGa 18O,85Rb, and 69Ga targets, theoretical calculation of production yield, calculation of requiredtarget and suggestion of optimum reaction to produce: Fluorine-18 , Strontium-82 andGermanium-68 touse in Hybrid Machines PET/CT Scanners.
This paper introduces some properties of separation axioms called α -feeble regular and α -feeble normal spaces (which are weaker than the usual axioms) by using elements of graph which are the essential parts of our α -topological spaces that we study them. Also, it presents some dependent concepts and studies their properties and some relationships between them.
Perchloroethylene (PERC) is commonly used as a dry-cleaning solvent, it is attributed to many deleterious effects in the biological system. The study aimed to investigate the harmful effect associated with PERC exposure among dry-cleaning workers. The study was carried out on 58 adults in two groups. PERC-exposed group; include thirty-two male dry-cleaning workers using PERC as a dry-cleaning solvent and twenty-six healthy non-exposed subjects. History of PERC exposure, use of personal protection equipment (PPE), safety measurement of the exposed group was recorded. Blood sample was taken from each participant for measurement of hematological markers, liver and kidney function tests. The results showed that 28.1% of the workers were usin
... Show More This study includes Estimating scale parameter, location parameter and reliability function for Extreme Value (EXV) distribution by two methods, namely: -
- Maximum Likelihood Method (MLE).
- Probability Weighted Moments Method (PWM).
Used simulations to generate the required samples to estimate the parameters and reliability function of different sizes(n=10,25,50,100) , and give real values for the parameters are and , replicate the simulation experiments (RP=1000)
... Show MoreWhen soft tissue planning is important, usually, the Magnetic Resonance Imaging (MRI) is a medical imaging technique of selection. In this work, we show a modern method for automated diagnosis depending on a magnetic resonance images classification of the MRI. The presented technique has two main stages; features extraction and classification. We obtained the features corresponding to MRI images implementing Discrete Wavelet Transformation (DWT), inverse and forward, and textural properties, like rotation invariant texture features based on Gabor filtering, and evaluate the meaning of every
... Show MoreConstruction contractors usually undertake multiple construction projects simultaneously. Such a situation involves sharing different types of resources, including monetary, equipment, and manpower, which may become a major challenge in many cases. In this study, the financial aspects of working on multiple projects at a time are addressed and investigated. The study considers dealing with financial shortages by proposing a multi-project scheduling optimization model for profit maximization, while minimizing the total project duration. Optimization genetic algorithm and finance-based scheduling are used to produce feasible schedules that balance the finance of activities at any time w
Two unsupervised classifiers for optimum multithreshold are presented; fast Otsu and k-means. The unparametric methods produce an efficient procedure to separate the regions (classes) by select optimum levels, either on the gray levels of image histogram (as Otsu classifier), or on the gray levels of image intensities(as k-mean classifier), which are represent threshold values of the classes. In order to compare between the experimental results of these classifiers, the computation time is recorded and the needed iterations for k-means classifier to converge with optimum classes centers. The variation in the recorded computation time for k-means classifier is discussed.