The study aims to investigate the effect of Al2O3 and Al additions to Nickel-base superalloys as a coating layer on oxidation resistance, and structural behavior of nickel superalloys such as IN 738 LC. Nickel-base superalloys are popular as base materials for hot components in industrial gas turbines such as blades due to their superior mechanical performance and high-temperature oxidation resistance, but the combustion gases' existence generates hot oxidation at high temperatures for long durations of time, resulting in corrosion of turbine blades which lead to massive economic losses. Turbine blades used in Iraqi electrical gas power stations require costly maintenance using traditional processes regularly. These blades are made of nickel superalloys such as IN 738 LC(Inconel 738). Few scientists investigated the impact of Al2O3 or Al additions to Nickel-base superalloys as coating layer by using the slurry coating method on oxidation resistance to enhance the Nickel-base superalloy's oxidation resistance. In this study, IN 738 LC is coated with two different coating percentages, the first being (10 Al+90 Al2O3) and the second being (40 Al+60 Al2O3). Scanning Electron Microscope (SEM) and X-Ray Diffraction (XRD) were performed on all samples before and after oxidation. According to the results, SEM images of the surface revealed that the layer of the surface has a relatively moderated porosity value and that some of the coating layers contain micro-cracks. The best surface roughness of specimens coated with 60 % alumina+40 % aluminum was 5.752 nm. Whereas, the surface roughness of specimens coated with 90 % alumina+10 % aluminum was 6.367 nm.Results reveal that alloys with both Al2O3 and Al additions have reported a positive synergistic effect of the Al2O3and Al additions on oxidation resistance. Moreover,the NiCrAl2O3 thermal coating has good oxidation resistance and the effective temperature of anti-oxidation is raised to 1100 °C in turn reducing the maintenance period of turbine blades
Biomass has been extensively investigated, because of its presence as clean energy source. Tars and particulates formation problems are still the major challenges in development especially in the implementation of gasification technologies into nowadays energy supply systems. Laser Induced Fluorescence spectroscopy (LIF) method is incorporated for determining aromatic and Polycyclic Aromatic Hydrocarbons (PAH) produced at high temperature gasification technology. The effect of tars deposition when the gases are cooled has been highly reduced by introducing a new concept of measurement cell. The samples of PAH components have been prepared with the standard constrictions of measured PAHs by using gas chromatograph (GC). OPO laser with tun
... Show MoreElectrophoretic Deposition (EPD) process offers various advantages like the fabrication of the ceramic coatings and bodies with dense packing, good sinterability and homogenous microstructure. The variables namely (applied potential, deposition time and sintering temperature) affected the development of hydroxyapatite (HAP) coatings. The coating weight and thickness were found to increase with the increase in applied potential or coating time. Sintering temperature was found to affect in change phases of the metal, furthermore the firing shrinkage of the HAP coating on a constraining metal substrate leads to serve cracking. XRD Characterization indicates the formation of a contamination free phase pure, and the optical micrographs show th
... Show MorePollutants generation is strongly dependant on the firing temperature and reaction rates of the gaseous reactants in the gas turbine combustion chamber. An experimental study is conducted on a two-shaft T200D micro-gas turbine engine in order to evaluate the impact of injecting ethanol directly into the compressor inlet air on the exhaust emissions. The study is carried out in constant speed and constant load engine tests. Generally, the results showed that when ethanol was added in a concentration of 20% by volume of fuel flow; NOx emission was reduced by the half, while CO and UHC emissions were almost doubled with respect to their levels when burning conventional LPG fuel alone.
As the prices of the fuel and power had fluctuated many times in the last decade and new policies appeared and signed by most of the world countries to eliminate global warming and environmental impact on the earth surface and humanity exciting, an urgent need appeared to develop the renewable energy harnessing technologies on the short-term and long-term and one of these promising technologies are the vertical axis wind turbines, and mostly the combined types. The purpose of the present work is to combine a cavity type Savonius with straight bladed Darrieus to eliminate the poor self-starting ability for Darrieus type and low performance for Savonius type and for this purpose, a three-bladed Darrieus type with symmetric
... Show MoreA nanocrystalline CdS thin film with 100 nm thickness has been prepared by thermal evaporation technique on glass substrate with substrate temperature of about 423 K. The films annealed under vacuum at different annealing temperature 473, 523 and 573 K. The X-ray diffraction studies show that CdS thin films have a hexagonal polycrystalline structure with preferred orientation at (002) direction. Our investigation showed the grain size of thin films increased from 9.1 to 18.9 nm with increasing the annealing temperature. The optical measurements showed that CdS thin films have direct energy band gap, which decreases with increasing the annealing temperature within the range 3.2- 2.85 eV. The absorbance edge is blue shifted. The absorption
... Show MoreThis paper presents a computer simulation model of a thermally activated roof (TAR) to cool a room using cool water from a wet cooling tower. Modeling was achieved using a simplified 1-D resistance-capacitance thermal network (RC model) for an infinite slab. Heat transfer from the cooling pipe network was treated as 2-D heat flow. Only a limited number of nodes were required to obtain reliable results. The use of 6th order RC-thermal model produced a set of ordinary differential equations that were solved using MATLAB - R2012a. The computer program was written to cover all possible initial conditions, material properties, TAR system geometry and hourly solar radiation. The cool water supply was considered time
... Show MoreBackground: In recent years, the immediate loading of dental implants has become more accepted as a standard protocol for the treatment of the edentulous area. Success in implant dentistry depends on several parameters that may improve phenomenon of osseointegration and new bone formation in close contact with the implant. The aim of study was to evaluate the effect of strontium chloride coating of screw shape commercially pure titanium dental implant osseointegration at bone - implant interface by histomorphometric analysis and compare with hydroxyapatite coating at 2 time periods (2 weeks and 6 weeks). Materials and methods: Electrophoretic Deposition Technique (EPD) was used to obtain a uniform coating layer on commercially pure titanium
... Show MoreIn this research, the study of thermal treating by laser, plasma glow discharge and tubular furnace on Ti-6Al-4V alloy coated with hydroxyapatite by methods of dip coating and electrophoretic deposition .A group of samples was coated by dip coating and another group was coated by electrophoretic deposition. The first group was treated by pulse laser 10 (mJ) as energy for samples from both coating with uniform distributed pulses on every single sample surface, The second thermal treating was made by plasma glow discharge in a locally made system with argon atmosphere, 600 Volt , and 6 cm distance between the electrodes, The third treating was made by tubular furnace in air atmosphere and 400 °C for 1 hour duration. T
... Show MoreOne of the most important problems in concrete production in Iraq and other country is the high sulfate content in sand that led to damage of concrete and hence reduces its compressive strength and may leads to cracking due to internal sulfate attack and delay ettringite formation. The magnetic water treatment process is adopted in this study. Many samples with different SO3 content are treated with magnetic water (12, 8, 4 and 2)L that needed for each 1kg of sand with the magnetic intensity (9000 and 5000) Gaus. The magnetic water needed is reduced with less SO3 content in sand. The ACI 211.1-91 concrete mix design was used in this research with slump range (75- 100) mm and the specified compressive strength (35MPa). The compressive streng
... Show MoreThe reactive yellow azo dye (λmax = 420 nm) is widely utilized for textile coloring due to its low-cost stability and tolerance properties. Treatment of dye-containing wastewater by traditional methods is usually inadequate because of its resistance to biological and chemical degradation. From this research, the continuous reactor of an advanced oxidation method supported the use of H2O2/TiO2/UV to remove the coloration of the reactive yellow dye from the discharge. At constant best conditions obtained from the batch reactor tests pH=7, H2O2 dosage = 400 mg/l and TiO2=25mg/l , the aqueous solutions were tested in the continuous reactor at different dye concentration and d
... Show More