Preferred Language
Articles
/
joe-954
Experimental and Numerical Investigation on the Performance of Straight-Bladed Vertical Axis Wind Turbine by Adding Cavities to it Structure

As the prices of the fuel and power had fluctuated many times in the last decade and new policies appeared and signed by most of the world countries to eliminate global warming and environmental impact on the earth surface and humanity exciting, an urgent need appeared to develop the renewable energy harnessing technologies on the short-term and long-term and one of these promising technologies are the vertical axis wind turbines, and mostly the combined types. The purpose of the present work is to combine a cavity type Savonius with straight bladed Darrieus to eliminate the poor self-starting ability for Darrieus type and low performance for Savonius type and for this purpose, a three-bladed Darrieus type with symmetrical S1046 airfoil was tested experimentally and numerically at different wind speeds (4.5 m/s, 8 m/s and 10 m/s) and it showed a poor self-starting ability at low wind speed although its higher performance at high wind speed. However when adding the cavities in two setup configuration and testing it at the same conditions, it was found that when adding the cavities as reversed cups in the core of the turbine, the performance increased and the power coefficient reached a maximum value at 10 m/s wind speed and it was observed to be 0.0914 , but when the solidity increased by adding three cavities, the performance was higher at low wind speed (4.5 m/s) but it tragically decreased at higher wind speed which indicates that the performance depends on the solidity and the turbine configuration. On the other hand, the numerical simulation showed a good match with the experimental results although it under-predicted the performance.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Thu Feb 15 2018
Journal Name
Ijca
Crossref
Publication Date
Thu Sep 06 2018
Journal Name
Al-khwarizmi Engineering Journal
Performance Augmenting of a Vertical Axis Wind Turbine using Adaptable Convergent Ducting System

Developments are carried out to enhance the performance of vertical axis wind turbines (VAWT). This paper studies the performance of the ducted wind turbine with convergent duct (DAWT). Basically, the duct technique is utilized to provide the desired wind velocity facing the turbine. Methodology was developed to estimate the decisive performance parameter and to present the effect of the convergent duct with different inlet angles. The ducted wind turbine was analyzed and simulated using MATLAB software and numerically using ANSYS-Fluent 17.2. Result of both approaches were presented and showed good closeness for the two cases of covering angles 12  and 20 respectively. Results also showed that the convergent duct with an inlet angl

... Show More
Crossref (1)
Crossref
View Publication Preview PDF
Publication Date
Wed Aug 31 2022
Journal Name
Iraqi Journal Of Science
Performance Analysis Of Vertical Axis Wind Turbine Blades Using Double Multiple Stream Tube Process

       The interest in green energy in recent years is very noticeable, as this energy is a very important alternative that can replace fuel in many applications, most notably electric power generation, so work must be done to develop a form of this energy such as wind energy by working on the development of turbines. The DMST method provided by Qblade software is an integrated tool for making a simulation of a vertical axis wind turbine (VAWT). The simulation was carried out on vertical axis wind turbines, designing turbine blades according to symmetrical NACA0018, and calculating some parameters such as power, torque and power coefficient. It is found that this type of turbine can be improved by treating the blade edges that cont

... Show More
Scopus Crossref
View Publication Preview PDF
Publication Date
Sat Apr 30 2022
Journal Name
Iraqi Journal Of Science
Fabrication of Vertical Axis Wind Turbine (VAWT) for a Water Pump at Low Speed Wind in Tikrit Region

      We have designed, fabricated and studied the vertical axis wind turbine and its characterization. The system has been locally designed to pump water. It is considered as a one of the best options for low speed wind. The turbine has eight blades , each blade is 1.8m in length,  and the area dimension of the turbine 3.6 m2 . were investigated  the  best characterization of the system at low wind speed are Power turbine  depends on the wind speed. It was 280 Watt at 6m/s and 160 watt at 5m/s  , and  the power after the turbine decreasing to factor  1/3. The system torque was 20 N.m , Power coefficient cap  0.29 , Tip speed ratio 0.46. It is suitable to be used in Iraq region , and low cost for get the wat

... Show More
Scopus Crossref
View Publication Preview PDF
Publication Date
Thu Oct 15 2015
Journal Name
International Journal Of Computer Applications
Experimental Investigation for Small Horizontal Portable Wind Turbine of Different Blades Profiles under Laboratory Conditions

Experimental investigation for small horizontal portable wind turbine (SHPWT) of NACA-44, BP-44, and NACA-63, BP-63 profiles under laboratory conditions at different wind velocity range of (3.7-5.8 m/s) achieved in present work. Experimental data tabulated for 2, 3, 4, and 6- bladed rotor of both profiles within range of blade pitch angles . A mathematical model formulated and computer Code for MATLAB software developed. The least-squares regression is used to fit experimental data. As the majority of previous works have been presented for large scale wind turbines, the aims were to present the performance of (SHPWT) and also to make a comparisons between both profiles to conclude which is the best performance. The overall efficiency and el

... Show More
Crossref
View Publication
Publication Date
Sat Oct 09 2021
Journal Name
Applied System Innovation
Design and Optimization of Vertical Axis Wind Turbines Using QBlade

Wind energy is considered one of the most important sources of renewable energy in the world, because it contributes to reducing the negative effects on the environment. The most important types of wind turbines are horizontal and vertical axis wind turbines. This work presents the full details of design for vertical axis wind turbine (VAWT) and how to find the optimal values of necessary factors. Additionally, the results shed light on the efficiency and performance of the VAWT under different working conditions. It was taken into consideration the variety of surrounding environmental conditions (such as density and viscosity of fluid, number of elements of the blade, etc.) to simulate the working of vertical wind turbines under di

... Show More
Scopus (12)
Crossref (11)
Scopus Clarivate Crossref
Publication Date
Sun Jun 30 2019
Journal Name
Journal Of Engineering
An experimental and numerical investigation of heat transfer effect on cyclic fatigue of gas turbine blade

Blades of gas turbine are usually suffered from high thermal cyclic load which leads to crack initiated and then crack growth and finally failure. The high thermal cyclic load is usually coming from high temperature, high pressure, start-up, shut-down and load change. An experimental and numerical analysis was carried out on the real blade and model of blade to simulate the real condition in gas turbine. The pressure, temperature distribution, stress intensity factor and the thermal stress in model of blade have been investigated numerically using ANSYS V.17 software. The experimental works were carried out using a particular designed and manufactured rig to simulate the real condition that blade suffers from. A new cont

... Show More
Crossref (2)
Crossref
View Publication Preview PDF
Publication Date
Thu Oct 31 2013
Journal Name
Al-khwarizmi Engineering Journal
Aeroelastic Behavior of a Wind Turbine Blade by a Fluid -Structure Interaction Analysis

In this paper, a numerical model for fluid-structure interaction (FSI) analysis is developed for investigating the aeroelastic response of a single wind turbine blade. The Blade Element Momentum (BEM) theory was adopted to calculate the aerodynamic forces considering the effects of wind shear and tower shadow. The wind turbine blade was modeled as a rotating cantilever beam discretized using Finite Element Method (FEM) to analyze the deformation and vibration of the blade. The aeroelastic response of the blade was obtained by coupling these aerodynamic and structural models using a coupled BEM-FEM program written in MATLAB. The governing FSI equations of motion are iteratively calculated at each time step, through exchanging data between

... Show More
View Publication Preview PDF
Publication Date
Mon Jul 31 2017
Journal Name
Journal Of Engineering
View Publication Preview PDF
Publication Date
Sat Dec 01 2012
Journal Name
Journal Of Engineering
Numerical and experimental investigation on the performance of the capillary tube using R-134a and R-600a

In this paper, isobutane (R-600a) is used as a suitable substitute for (R-134a) when changing the length of capillary tube. And the experimental data on capillary tube are obtained under different conditions such as (subcooling and ambient temperatures) on domestic refrigerator (9ft3 size), this data shows that (R-600a) a suitable substitute for (R134a) .The test presented a model for a steady state, two-phase flow in capillary tube for vapour compression system .The numerical model depends on conservation equations (mass, energy and momentum) as wall as the equation of state for refrigerant. The solution methodology was implemented by using finite difference techniques. The system results indicate that it is possible to change the refri

... Show More
Crossref (2)
Crossref
View Publication Preview PDF