Preferred Language
Articles
/
fxbXUYcBVTCNdQwCS0Rr
Optimal characteristics of wind turbine to maximize capacity factor

The capacity factor is the main factor in assessing the efficiency of wind Turbine. This paper presents a procedure to find the optimal wind turbine for five different locations in Iraq based on finding the highest capacity factor of wind turbine for different locations. The wind data for twelve successive years (2009-2020) of five locations in Iraq are collected and analyzed. The longitudes and latitudes of the candidate sites are (44.3661o E, 33.3152o N), (47.7738o E, 30.5258o N), (45.8160o E, 32.5165o N), (44.33265o E, 32.0107o N) and (46.25691o E, 31.0510o N) for Baghdad, Basrah, Al-Kut, Al-Najaf, and Al-Nasiriyah respectively. The average wind velocity, standard deviation, Weibull shape and scale factors, and probability density function are calculated. According to quadratic model, the capacity factor for five wind turbines of different characteristics is calculated and compared with wind turbines in wind farm. The suitable wind turbine for the candidate sites is selected via matching between wind sites-wind turbines characteristics. The Gamesa G114-2.0MW model has highest capacity factor among other models for all selected sites whereas the Adwen AD 5-132 has lowest capacity factor. The Genetic algorithm is used to find the optimum cut-in and rated speeds of the wind turbine. The main objective of the algorithm to be maximized is the capacity factor of wind turbine. According to the practical ranges for cut-in and rated speeds of wind turbines, a proposed optimal value of cut-in and rated speeds are identified to ensure highest capacity factor for the studied wind sites in Iraq. MATLAB program is used to simulate the mathematical model of wind energy, wind turbine performance, and the capacity factor of wind turbines.

Crossref
View Publication
Publication Date
Tue Aug 31 2021
Journal Name
Iraqi Journal Of Science
Optimum Selection of Wind Turbines Using Normalized Power and Capacity Factor Curves

The main objective of this paper is present a novel method to choice a certain wind turbine for a specific site by using normalized power and capacity factor curves. The site matching is based on identifying the optimum turbine rotation speed parameters from turbine performance index (TPI) curve, which is obtained from the higher values of normalized power and capacity factor curves. Wind Turbine Performance Index a new ranking parameter, is defined to optimally match turbines to wind site. The relations (plots) of normalized power, capacity factor, and turbine performance index versus normalized rated wind speed are drawn for a known value of Weibull shape parameter of a site, thus a superior method is used for Weibull parameters estima

... Show More
Scopus (2)
Crossref (2)
Scopus Crossref
View Publication Preview PDF
Publication Date
Wed May 01 2019
Journal Name
Materials Science And Engineering
Crossref (29)
Crossref
Publication Date
Sat Apr 30 2022
Journal Name
Iraqi Journal Of Science
Fabrication of Vertical Axis Wind Turbine (VAWT) for a Water Pump at Low Speed Wind in Tikrit Region

      We have designed, fabricated and studied the vertical axis wind turbine and its characterization. The system has been locally designed to pump water. It is considered as a one of the best options for low speed wind. The turbine has eight blades , each blade is 1.8m in length,  and the area dimension of the turbine 3.6 m2 . were investigated  the  best characterization of the system at low wind speed are Power turbine  depends on the wind speed. It was 280 Watt at 6m/s and 160 watt at 5m/s  , and  the power after the turbine decreasing to factor  1/3. The system torque was 20 N.m , Power coefficient cap  0.29 , Tip speed ratio 0.46. It is suitable to be used in Iraq region , and low cost for get the wat

... Show More
Scopus Crossref
View Publication Preview PDF
Publication Date
Thu Oct 15 2015
Journal Name
International Journal Of Computer Applications
Experimental Investigation for Small Horizontal Portable Wind Turbine of Different Blades Profiles under Laboratory Conditions

Experimental investigation for small horizontal portable wind turbine (SHPWT) of NACA-44, BP-44, and NACA-63, BP-63 profiles under laboratory conditions at different wind velocity range of (3.7-5.8 m/s) achieved in present work. Experimental data tabulated for 2, 3, 4, and 6- bladed rotor of both profiles within range of blade pitch angles . A mathematical model formulated and computer Code for MATLAB software developed. The least-squares regression is used to fit experimental data. As the majority of previous works have been presented for large scale wind turbines, the aims were to present the performance of (SHPWT) and also to make a comparisons between both profiles to conclude which is the best performance. The overall efficiency and el

... Show More
Crossref
View Publication
Publication Date
Sun Oct 01 2023
Journal Name
Baghdad Science Journal
Small Horizontal Wind Turbine Design and Aerodynamic Analysis Using Q-Blade Software

Wind energy is one of the most common and natural resources that play a huge role in energy sector, and due to the increasing demand to improve the efficiency of wind turbines and the development of the energy field, improvements have been made to design a suitable wind turbine and obtain the most energy efficiency possible from wind. In this paper, a horizontal wind turbine blade operating under low wind speed was designed using the (BEM) theory, where the design of the turbine rotor blade is a difficult task due to the calculations involved in the design process. To understand the behavior of the turbine blade, the QBlade program was used to design and simulate the turbine rotor blade during working conditions. The design variables suc

... Show More
Scopus (1)
Crossref (1)
Scopus Crossref
View Publication Preview PDF
Publication Date
Wed Aug 31 2022
Journal Name
Iraqi Journal Of Science
Performance Analysis Of Vertical Axis Wind Turbine Blades Using Double Multiple Stream Tube Process

       The interest in green energy in recent years is very noticeable, as this energy is a very important alternative that can replace fuel in many applications, most notably electric power generation, so work must be done to develop a form of this energy such as wind energy by working on the development of turbines. The DMST method provided by Qblade software is an integrated tool for making a simulation of a vertical axis wind turbine (VAWT). The simulation was carried out on vertical axis wind turbines, designing turbine blades according to symmetrical NACA0018, and calculating some parameters such as power, torque and power coefficient. It is found that this type of turbine can be improved by treating the blade edges that cont

... Show More
Scopus Crossref
View Publication Preview PDF
Publication Date
Thu Sep 06 2018
Journal Name
Al-khwarizmi Engineering Journal
Performance Augmenting of a Vertical Axis Wind Turbine using Adaptable Convergent Ducting System

Developments are carried out to enhance the performance of vertical axis wind turbines (VAWT). This paper studies the performance of the ducted wind turbine with convergent duct (DAWT). Basically, the duct technique is utilized to provide the desired wind velocity facing the turbine. Methodology was developed to estimate the decisive performance parameter and to present the effect of the convergent duct with different inlet angles. The ducted wind turbine was analyzed and simulated using MATLAB software and numerically using ANSYS-Fluent 17.2. Result of both approaches were presented and showed good closeness for the two cases of covering angles 12  and 20 respectively. Results also showed that the convergent duct with an inlet angl

... Show More
Crossref (1)
Crossref
View Publication Preview PDF
Publication Date
Thu Oct 31 2013
Journal Name
Al-khwarizmi Engineering Journal
Aeroelastic Behavior of a Wind Turbine Blade by a Fluid -Structure Interaction Analysis

In this paper, a numerical model for fluid-structure interaction (FSI) analysis is developed for investigating the aeroelastic response of a single wind turbine blade. The Blade Element Momentum (BEM) theory was adopted to calculate the aerodynamic forces considering the effects of wind shear and tower shadow. The wind turbine blade was modeled as a rotating cantilever beam discretized using Finite Element Method (FEM) to analyze the deformation and vibration of the blade. The aeroelastic response of the blade was obtained by coupling these aerodynamic and structural models using a coupled BEM-FEM program written in MATLAB. The governing FSI equations of motion are iteratively calculated at each time step, through exchanging data between

... Show More
View Publication Preview PDF
Publication Date
Thu Feb 15 2018
Journal Name
Ijca
Crossref
Publication Date
Sat Oct 01 2022
Journal Name
Baghdad Science Journal
Determination of Optimal Time-Average Wind Speed Data in the Southern Part of Malaysia

Mersing is one of the places that have the potential for wind power development in Malaysia. Researchers often suggest it as an ideal place for generating electricity from wind power. However, before a location is chosen, several factors need to be considered. By analyzing the location ahead of time, resource waste can be avoided and maximum profitability to various parties can be realized. For this study, the focus is to identify the distribution of the wind speed of Mersing and to determine the optimal average of wind speed. This study is critical because the wind speed data for any region has its distribution. It changes daily and by season. Moreover, no determination has been made regarding selecting the average wind speed used for w

... Show More
Scopus (6)
Crossref (1)
Scopus Clarivate Crossref
View Publication Preview PDF