The prevalence of using the applications for the internet of things (IoT) in many human life fields such as economy, social life, and healthcare made IoT devices targets for many cyber-attacks. Besides, the resource limitation of IoT devices such as tiny battery power, small storage capacity, and low calculation speed made its security a big challenge for the researchers. Therefore, in this study, a new technique is proposed called intrusion detection system based on spike neural network and decision tree (IDS-SNNDT). In this method, the DT is used to select the optimal samples that will be hired as input to the SNN, while SNN utilized the non-leaky integrate neurons fire (NLIF) model in order to reduce latency and minimize devices’ power usage. Also, a rand order code (ROC) technique is used with SNN to detect cyber-attacks. The proposed method is evaluated by comparing its performance with two other methods: IDS-DNN and IDS-SNNTLF by using three performance metrics: detection accuracy, latency, and energy usage. The simulation results have shown that IDS-SNNDT attained low power usage and less latency in comparison with IDS-DNN and IDS-SNNTLF methods. Also, IDS-SNNDT has achieved high detection accuracy for cyber-attacks in contrast with IDS-SNNTLF.
Merging biometrics with cryptography has become more familiar and a great scientific field was born for researchers. Biometrics adds distinctive property to the security systems, due biometrics is unique and individual features for every person. In this study, a new method is presented for ciphering data based on fingerprint features. This research is done by addressing plaintext message based on positions of extracted minutiae from fingerprint into a generated random text file regardless the size of data. The proposed method can be explained in three scenarios. In the first scenario the message was used inside random text directly at positions of minutiae in the second scenario the message was encrypted with a choosen word before ciphering
... Show MoreMost includeding techniques of digital watermark even now working through the direct inclusion in the pixel without taking into account the level of compression (attack) that can go wrong, which makes digital watermark can be discarded easily. In this research, a method was proposed to overcome this problem, which is based on DCT (after image partitioned into non overlapped blocks with size 8×8 pixel), accompanied by a quantization method. The watermark (digital image) is embedded in DCT frequency domain seeking the blocks have highest standard deviation (the checking is only on the AC coefficients) within a predetermined threshold value, then the covered image will compressed (attacked) varying degrees of compression. The suggested met
... Show MoreIn this paper an algorithm for Steganography using DCT for cover image and DWT for hidden image with an embedding order key is proposed. For more security and complexity the cover image convert from RGB to YIQ, Y plane is used and divided into four equally parts and then converted to DCT domain. The four coefficient of the DWT of the hidden image are embedded into each part of cover DCT, the embedding order based on the order key of which is stored with cover in a database table in both the sender and receiver sender. Experimental results show that the proposed algorithm gets successful hiding information into the cover image. We use Microsoft Office Access 2003 database as DBMS, the hiding, extracting algo
... Show MoreThe sending of information at the present time requires the speed and providing protection for it. So compression of the data is used in order to provide speed and encryption is used in order to provide protection. In this paper a proposed method is presented in order to provide compression and security for the secret information before sending it. The proposed method based on especial keys with MTF transform method to provide compression and based on RNA coding with MTF encoding method to provide security. The proposed method based on multi secret keys. Every key is designed in an especial way. The main reason in designing these keys in special way is to protect these keys from the predication of the unauthorized users.
Structure of network, which is known as community detection in networks, has received a great attention in diverse topics, including social sciences, biological studies, politics, etc. There are a large number of studies and practical approaches that were designed to solve the problem of finding the structure of the network. The definition of complex network model based on clustering is a non-deterministic polynomial-time hardness (NP-hard) problem. There are no ideal techniques to define the clustering. Here, we present a statistical approach based on using the likelihood function of a Stochastic Block Model (SBM). The objective is to define the general model and select the best model with high quality. Therefor
... Show MoreThe brain's magnetic resonance imaging (MRI) is tasked with finding the pixels or voxels that establish where the brain is in a medical image The Convolutional Neural Network (CNN) can process curved baselines that frequently occur in scanned documents. Next, the lines are separated into characters. In the Convolutional Neural Network (CNN) can process curved baselines that frequently occur in scanned documents case of fonts with a fixed MRI width, the gaps are analyzed and split. Otherwise, a limited region above the baseline is analyzed, separated, and classified. The words with the lowest recognition score are split into further characters x until the result improves. If this does not improve the recognition s
... Show MoreAerial Robot Arms (ARAs) enable aerial drones to interact and influence objects in various environments. Traditional ARA controllers need the availability of a high-precision model to avoid high control chattering. Furthermore, in practical applications of aerial object manipulation, the payloads that ARAs can handle vary, depending on the nature of the task. The high uncertainties due to modeling errors and an unknown payload are inversely proportional to the stability of ARAs. To address the issue of stability, a new adaptive robust controller, based on the Radial Basis Function (RBF) neural network, is proposed. A three-tier approach is also followed. Firstly, a detailed new model for the ARA is derived using the Lagrange–d’A
... Show More